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ABSTRACT
The success of Deep Neural Networks with image classifica-
tion prompted researchers to explore the applications of Deep
Learning in Medical Imaging and Medical Image Analysis
(MIA). Deep Neural Networks have sufficiently demonstrated
their capabilities of performingMIA tasks tirelessly and with
fewer errors as opposed to their human counterpart. However
the challenge of trainingneural networksusing sensitivemed-
ical data, without violating the privacy of patients remains
an active field of research. Many solutions exist to address
this concern, however a systematic reviewandanalysis of these
techniques is yet to be conducted. This paper attempts to con-
duct the first systematic review of privacy-preserving tech-
niques to train deep learning models. Emphasis is especially
put on the performance and privacy analysis of the techniques.
In addition, the communication and runtime costs, the abil-
ity of the solutions to scale, tolerance to faults and the level
of security against threats and attacks are also studied.

KEYWORDS
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1 INTRODUCTION
Medical imaging is a vital aspect of medical science, performed
for critical surgeries and early detection and prevention of chronic
illnesses. Using various technologies such as Magnetic Resonance
Imaging (MRI), Computer Tomography (CT) and Positron Emission
Tomography (PET), the internal structure of the human body is
created to study or identify any abnormalities, that may exist. The
study of medical images or Medical Image Analysis (MIA) is pri-
marily conducted by radiologists since it requires years of training
and practise. MIA of a single patient involves manual inspection
of over 100 medical images and comprises of repetitive tasks (such
as identification of a Region of Interest (ROI) and image segmen-
tation) which can cause cognitive fatigue. MIA is thus a laborious
task limited by the skills and experience of radiologists [14]. It is
also a field with very low tolerance for human error since one mis-
take may result in incorrect diagnosis of a patient and potentially
lead to loss of human life. While humans may not always perform
repetitive tasks to the best of their abilities, machines will perform
them tirelessly and consistently [9]. The remarkable success of
deep neural networks in image classification, popularised by the
ImageNet challenge, accelerated its adoption within the field of
MIA [14, 18, 21]. Deep Learning (DL) models have had tremendous

success, not only within MIA but also within other fields of med-
ical science. Although this is an active field of research, several
challenges still remain [20]. One such challenge is to learn whilst
preserving the privacy of the patients.

DL models require large quantities of data and powerful ma-
chines to be able to perform large volumes of computation. This
may not always be possible, for instance at smaller medical insti-
tutes or for rare diseases [6]. Larger medical institutes who meet
these requirements are able to train DL models locally. These mod-
els however are biased since the data is not a good representation
of the general population [6, 12, 30]. This is because the institute
perhaps specialises in a certain disease or only observes specific
medical problems in their patients due to their geographic loca-
tion. DL models thus need to be trained using data collected from
several institutes. The traditional, client-server architecture for
training raises several privacy concerns. Centralised training re-
quires the data from all participating institutes to be collected in
a single server. However once the data is uploaded to the server,
the institutes lose their data ownership and governance rights [15].
Furthermore, there is no guarantee that the data is transmitted and
stored securely, making it vulnerable to attacks. Efforts have been
made to create centralised repositories such as eICU Collaborative
Research Database and The Cancer Genome Atlas which contain
anonymised medical data. But data privacy and protection laws
such as the GDPR in Europe and HIPAA in The United States pose
a large overhead in the creation of such data repositories [1]. The
data is required to be anonymised such that it cannot be traced
back to the original patient. While this is a step towards preserving
the privacy of patients, the anonymisation and de-identification
process negatively affects the utility of the data of future research.
Anonymisation also does not provide any guarantees against re-
identification as anonymised data contains unique statistical fin-
gerprints which can be exploited using linkage attacks [3, 16, 23].
Distributed learning addresses the data ownership and governance
concerns of centalised training by moving the model to the data.
While several distributed learning methodologies exist, they require
the aid of additional data privacy protection techniques in order to
learn without violating the privacy of patients [1–3, 6, 12, 28, 30].

Privacy-preserving deep learning is an active field of research
and has made several advances in the last decade. While many sys-
tems and methodologies exist, a systematic review of the literature
has not yet been attempted. The goal of this study is to identify
existing DL systems used in the field of MIA which account for
patient privacy. The study is conducted by first developing a set
of research questions (RQs) as presented in Section 2. Keywords
are extracted from the RQs which are used to construct search
queries. A set of inclusion and exclusion criterion are applied to
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the shortlisted papers to form the final list of papers included in
this study. Each paper is summarised and critically analysed in
Section 4 following which a comparative analysis is conducted in
Section 5. The study concludes by stating some of its limitations
and directions for future work in Section 6. Being the first of its
kind, this study wishes to aid current and future researchers to get
acquainted with the state-of-the-art solutions that exist in the field
of privacy-preserving deep learning. As such, prior knowledge of
Deep Learning and Medical Image Analysis amongst the readers is
assumed.

2 STUDY DESIGN
The over arching goal of this systematic review is to identify the
existing privacy-preserving techniques which can be used to train
Deep Learning (DL) models using medical data. Additionally, this
study seeks to analyse these privacy-preserving techniques in an
attempt to identify the ones which provide good performance, are
scalable and robust, and provide maximum protection against se-
curity threats that violate the patient’s privacy. To aid in this goal,
the following research questions are formulated.

RQ1. What are the existing systems, platforms or techniques that
facilitate deep learning on medical images that do not invade
the patient’s privacy?

RQ2. What are the top performing deep learning models being
used to perform tasks in medical imaging?

RQ3. What are the specific attacks that can compromise the secu-
rity of these systems?

RQ4. What is the amount of data leakage in these systems?

The keywords extracted from the research questions were used
to construct the following search queries. Google Scholar and Scopus
were queried to identify papers relevant for this study.

(1) (deep|machine) & learning & (“medical imaging”|“medical
image analysis”)

(2) (deep|machine) & learning & (“privacy preserving”|private) &
medical & (imag*|data)

(3) (deep|machine|federated|distributed) & learning & “privacy
preserving” & medical & (imag*|data)

(4) (deep|machine|federated|distributed) & learning& (attack|flaw|
threat) & (security|privacy)

The obtained papers were then cross-checked with the inclusion
(IC) and exclusion criterion (EC) listed below. All papers satisfying
one or more inclusion criterion whilst satisfying all exclusion crite-
rion were shortlisted via a preliminary survey of the paper. Finally,
the shortlisted papers were given a secondary survey to determine
if they were relevant for the study and if so, were included in the
review.

IC1. The paper presents a deep learning system, platform or tech-
nique for training using medical data.

IC2. The paper presents a deep learning system, platform of tech-
nique which can be used to train using distributed data.

IC3. The paper evaluates the performance of one or more deep
learning models trained using the presented technique.

IC4. The paper reports the dataset used for training along with
the accuracy or error of the model(s).

IC5. The paper analyses the runtime performance and communi-
cation overhead of the proposed technique.

IC6. The paper conducts privacy and security analysis of the
proposed technique.

IC7. The paper identifies vulnerabilities or describes techniques
to exploit the proposed technique.

EC1. The paper is published or expected to be published in a
peer-reviewed journal.

EC2. The paper is written in English.
The shortlisted papers were reviewed to extract the following

data attributes for further analysis.
(1) Key: A unique, bibtex key to identify each paper.
(2) Author : Authors of the paper.
(3) Title: Title of the paper.
(4) Year : Year of publication.
(5) Journal: Name of the journal/conference the paper was pub-

lished in.
(6) Dataset: Name of the dataset(s) used to evaluate the perfor-

mance of the proposed system.
(7) Model: Neural Network or ML model(s) used for training.
(8) Performance: Performance (accuracy or error) of the models

trained using the proposed technique.
(9) Communication: Communication overhead of the proposed

technique, if any.
(10) Scalability: If relevant, the number of participants the pro-

posed technique can accommodate.
(11) Reliability: If relevant, how reliable is the proposed technique

during a system failure?
(12) Runtime: Runtime overhead of the proposed technique, if

any.
(13) Privacy: Quantity of data leakage of the proposed technique,

if any.
(14) Security: Threats and attacks the proposed technique is vul-

nerable to, if any.

3 RELATEDWORK
This section presents prior work and concepts that are relevant this
this review. Related literature such as other literature studies and
systematic reviews are presented first. An overview of data privacy
techniques are presented next, followed by security threats and
attacks which can be used to exploit deep neural networks.

3.1 Related Literature
The paper by Zerka et al. (2020) is the only other systematic review
that was identified to be related to this review. The Zerka study
reviewed 6 papers that presented distributed machine learning
techniques which do not violate the privacy of patients. The Zerka
study emphasises on the ethics and data governance of distributed
machine learning. In contrast, the goal of this study is to analyse
privacy-preserving techniques specifically designed for deep learn-
ing models. The emphasis of this study is on performance, runtime
and security aspect of the techniques [40]. Other literature studies
by Greenspan et al. (2016), Shen et al. (2017), Litjens et al. (2017)
and Suzuki et al. (2017) present an overview of deep learning in the
field of medical image analysis. However, since these studies were
conducted during the period in which deep learning was gaining its
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momentum, the focus is towards the novelty of deep learning rather
than on its application. The studies are not systematic reviews thus
do not perform any analysis of the models which were presented.
Finally, these studies do not analyse the privacy aspect of deep
learning. [11, 20, 29, 32].

3.2 Data privacy techniques
Prior to the advent of deep learning and to-date, anonymisation or
de-identification of data remains the most popular method to pre-
serve the privacy of patients when sharing medical data. While no
standardised methods for de-identification exist and different poli-
cies propose different requirements, three primary approaches are
identified: 1. de-identification or the removal of patient identifiers 2.
pseudonymisation or replacement of patient identifiers with unique
pseudonyms and 3. anonymisation which entails de-identification
followed by removal of further information in order to minimize
the probability of re-identification. Anonymisation is still popu-
lar due to its simplicity and the fact that it is built into existing
medical image analysis tools. Anonymisation however does not
guarantee complete privacy as existing literature has demonstrated
that it is possible to reconstruct the original data by combining the
anonymised data with other public datasets, commonly referred to
as linkage attacks [19, 33].

Rather than altering the data as done in de-identification and
pseudonymization, Differential Privacy (DP) preserves the privacy
of patients by injecting noise. This allows for statistical analysis
of the dataset without compromising the sensitive details of an
individual patient. Differentially private data is resistant to linkage
attacks however perturbing the data leads to its degradation which
may lead to poor model performance and quality of research and
analysis [3, 13, 30, 36].

Encryption is the gold standard for secure communication and
data transfer, originating from the field of cryptography. The state-
of-the-art encryption schemes cannot be cracked using a brute
force attack. They can be applied to the models or the data alike,
making them an ideal choice when dealing with sensitive data.
Homomorphic Encryption (HE) is an encryption scheme which
allows certain computations (such as addition, subtraction and
multiplication) to be conducted directly on encrypted data. HE
enables models to be trained directly on unperturbed, encrypted
data, however it does so with additional computational overhead
[13, 16, 36, 39].

3.3 Security threats and attacks
In classical software development, computers strictly follow a spe-
cific set of programmed instructions. In contrast, deep learning
algorithms develop their own rules based on a substantial amount
of data provided to them. This behaviour often leads to neural
networks being interpreted as a black box, preventing users from
understanding its inner workings. This black box condition makes
neural networks a potential target for exploitation, thus identifica-
tion of its security threats and vulnerabilities must be prioritised.
Existing research has presently identified several key threats, which
are summarised below.

Adversarial examples are inputs that are often indistinguishable
from typical inputs, yet contain intentional feature changes that

leads to incorrect classification [34]. Several studies emphasise
adversarial attacks to be an intrinsic flaw of deep learning [4, 22, 24,
34]. Adversarial attacks are significant because they question the
robustness of the deep learning models and the essence of what it
truly learnt. They are especially crucial in terms of computer vision
applications such as self driving cars, facial recognition systems
and medical imaging [22]. Unlike adversarial attacks that target
problems within the neural networks, data poisoning exploits the
heavy reliance of the models on data. The aim is to modify the
training data such that the model can learn malicious intent and
manifest that as its predictions. Open and public datasets that are
used for training are especially open to data poisoning [8, 37].

In addition to attacks which target the data, the DL model itself
can be exploited. By observing the gradients and parameters of
a trained network, parts of the dataset can be obtained. Model
inversion, membership inference and reconstruction attacks often
utilise this technique to obtain the training data or infer if a public
dataset was used to train the model. Combined with linkage and
tracking attacks, the presence of an individual in the dataset and
their sensitive information can be obtained [13, 27, 30, 31].

4 RESULTS
This section presents the discoveries made while conducting this
systematic review. The privacy-preserving deep learning techniques
can be broadly classified into 3 categories namely: centralised learn-
ing, distributed learning and synthetic data generation. The review
additionally found several solutions that specialise in medical im-
age analysis tasks using neural networks. These solutions and tech-
niques are summarised in this section along with their critical
assessment and comparisons made where possible.

4.1 Asynchronous Distributed Learning
Shokri et al. (2015) present the very first privacy preserving system
for collaborative deep learning on sensitive data, commonly known
now as Federated Learning (FL). The system enables multiple partic-
ipants in possession of sensitive data, to train their models locally.
The model parameters are then selectively shared with a centralised
server where they are aggregated to form a global set of parameters.
The local models are able to download the most frequently updated
global parameters resulting in robust local models. Since the data
no longer requires to be pooled at a central server, the system en-
ables institutes to partake in collaborative research with full rights
and control over their data. Compared to centralised training, the
data leakage is drastically reduced since now there is only indirect
leakage in the form of model parameters. The system is tested by
performing image classification and regression tasks on the MNIST
and SVHN datasets. Although the system is able to attain accuracy
similar to centralised training, it should have also been tested with
sensitive medical data. The authors propose a technique to further
reduce the data leakage using Differential Privacy (DP). A compar-
ative analysis is done to identify the trade-off between privacy and
accuracy. The accuracy of the models fall with increased privacy.
The analysis shows that the secure models are able to achieve their
past accuracy when the number of participants and the quantity
of shared parameters is increased. Despite the thorough privacy
analysis conducted, the authors fail to conduct fault tolerance and
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Table 1: Summary of privacy preserving techniques

Key Dataset(s) Model(s) Performance CommunicationScalability Reliability Runtime Privacy Security
Asynchronous distributed learning
shokri
2015
privacy

MNIST
and
SVHN

MLP and
CNN

Accuracy of
models similar
to centalized
training

Not evaluated Not eval-
uated

Not eval-
uated

Not eval-
uated

Indirect
data leak-
age in
the form
of model
gradients

Model-
inversion
and ad-
versarial
attacks

amir2017
scalable

Parkinson’s
telemon-
itoring
skin
segmen-
tation

ML mod-
els for
classifica-
tion and
regres-
sion

Better per-
formance for
classification
tasks using
proposed
aggregation
scheme

Not evaluated Scales
upto 100
nodes

Stress
tested
for fault
toler-
ance and
liveliness

Not eval-
uated

Not evalu-
ated

Adversarial
attacks

aono2017
privacy

MNIST
and
SVHN

MLP Accuracy of
model similar
to unencrypted
gradients

Communication
overhead dou-
bles with
encrypted
gradients

Not eval-
uated

Not eval-
uated

Not eval-
uated

No gra-
dients
leaked to
parameter
server

Adversarial
attacks

vizitiu
2019
towards

MNIST
and X-
ray of
coronary
angiogra-
phy

CNN Accuracy
of model
marginally
lower to plain-
text training

Not evaluated Not eval-
uated

Not eval-
uated

Cyphertext
training
takes 30
times
longer

No data
leakage

Adversarial
attacks

jeon2019
privacy

CIFAR-
10 and
CIFAR-
100

VGG and
ResNet

Models achieve
higher accuracy
compared to
LSGD

Lower commu-
nication costs
compared to
LSGD

Not eval-
uated

Not eval-
uated

Not eval-
uated

Gradient
of a sin-
gle layer
leaked to
parameter
server

Secure 1

phuong
2019
privacy

MNIST,
CIFAR-
10,
CIFAR-
100 and
UCI

MLP,
CNN and
ResNet

Models achieve
accuracy and
F1 score similar
to centralized
training

Not evaluated Not eval-
uated

Not eval-
uated

Not eval-
uated

No data
leakage

Adversarial
attacks

reliability tests for the system. Additionally, all analysis were con-
ducted using the accuracy of the models. Without a description of
the data distribution, it is difficult to validate the legitimacy of the
reported scores [30].

Rather than sharing the gradients of the local models with the
parameter server, as proposed by Shokri et al. (2015), Phuong et
al. (2019) put forth the idea of sharing the weights of the local
models. The authors propose two systems: 1. Server-aided Network
Topology (SNT) and 2. Fully-connected Network Topology (FNT).
The SNT system mimics the traditional FL system proposed by
Shokri et al. (2015) with additional security against an "honest-but-
curious" parameter server by encrypting the local weights before
transmission. Assuming there are L number of institutes, the SNT
system comprises of L training or participant nodes and a param-
eter server. Each participant connects with the parameter server

using a separate TLS connection, thus a total of L connections are
required. The FNT system does not contain a parameter server and
instead all participants are connected to each other using L(L−1)/2
connections. This is similar to the Cyclic Weight Transfer (CWT)
system proposed by Chang et al. (2018) where a single model is
trained by each participant multiple times. Thorough performance
and runtime analysis of the proposed systems are conducted. A
MLP is used for text (various UCI datasets) and CNN and ResNet
are used for image (MNIST, CIFAR-10 and CIFAR-100) datasets to
perform classification tasks. The analysis shows that the models
trained using the proposed systems are able to achieve an accuracy
and F1 score similar to that of centralised training. The authors rec-
ommend utilising the SNT system when the number of participants
is L ≥ 20 and the FNT system otherwise. It is however unclear how
this threshold was identified since the experiments were conducted

4
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using only 5 participants. It is also unclear which system (SNT or
FNT) has been used for the experiments and how they compare
against each other. Although runtime analysis has been done, the
results of the proposed systems are not compared to traditional FL
thus the feasibility and motivation for sharing weights instead of
the gradients is unclear. Although the distribution of the data is
described, the data is randomly and equally split amongst the par-
ticipants which is not representative of what is observed in reality.
The experiments were also conducted using non-medical datasets
[26].

Federated Learning (FL) addresses the privacy concerns raised
regarding centralised databases when dealing with medical data.
Since the data remains on-site, FL is able to alleviate all concerns
regarding data governance and ownership. However, as pointed
out by the Shokri et al. (2015) and Phuong et al. (2019), FL is not
inherently privacy preserving. The extent to which parameters
are shared with the central server has a direct effect on the pri-
vacy resulting in a trade-off between privacy and accuracy of the
models. Additionally, FL systems are prone to model-inversion at-
tacks where even a small quantity of leaked gradients can be used
to obtain the training data [2, 30]. Aono et al. (2017) propose an
improvement to the original FL system by using Homomorphic
Encryption (HE) to encrypt the model gradients. The HE encryp-
tion scheme not only enables learning over encrypted data, but
also enables all gradients to be shared with the central server, thus
boosting the accuracy. The improved system is tested by training a
MLP to perform classification on the MNIST and SVHN datasets.
The results are promising as the new system does not leak any gra-
dients to the parameter server. Although the new system is able to
match the accuracy of models trained without encrypted gradients,
a communication overhead between participants and parameter
server is observed. Thorough computational analysis conducted by
the authors show that the communication overhead posed by the
additional encryption-decryption phase can be reduced by multi-
threading the procedure. However, only accuracy of the models was
using to evaluate the model and distribution of the data was not
reported. Authors propose two encryption schemes: Paillier-based
and LWE-based but only conducted analysis with LWE-based en-
cryption. Further analysis, preferably using medical data, needs to
be conducted to also validate the Paillier-based encryption scheme.
The overall outcomes of the improved solution are positive since it
shifts the original privacy-accuracy trade-off to a privacy-efficiency
trade-off. The authors propose to address this trade-off by utilising
more compute power and dedicated software and hardware in the
future [2].

While Aono et al. (2017) opted to encrypt only the gradients
of the models, Vizitiu et al. (2019) encrypted the entire data using
Homomorphic Encryption (HE). The authors employ the MORE
encryption scheme which allows limited - albeit sufficient - opera-
tions to be performed on encrypted data directly. The model is thus
able to learn from encrypted data directly, without the requirement
of an encryption key. A CNN is trained on unencrypted (plaintext)
and encrypted (cyphertext) data using the MNIST digits dataset
and another containing X-ray coronary angiography. Analysis of
the models indicate that training using cyphertext provides a fully
secure and private model whose accuracy is only marginally lower

compared to plaintext training. There is however a significant run-
time overhead as the model trained using cyphertext takes 30 times
longer to train. The authors provide a complete security analysis
of MORE and Fully Homomorphic Encryption (FHE) schemes. Al-
though FHE is identified as the more secure encryption scheme, it
also is computationally more demanding. The MORE encryption
scheme is more simplistic since with enough pairs of encrypted-
unencrypted data, an attacker may be able to compute the secret key.
The MORE encryption scheme is however able to provide "good
enough" security at cheaper computations making it more suitable
for DL. HE addresses limitations of both DP and FL. Since the data
is encrypted, model inversion attacks are no longer possible and
no noise needs to be injected thus preserving the data quality. The
authors make an assumption that the data can be centralised on
account of it being encrypted. This assumption may not always
hold due to restrictions posed by data privacy laws. Institutes may
still raise concerns regarding data ownership or may not wish to
share the data with an external server. Further analysis is thus
required to compare the runtime and performance when the data
is distributed. This analysis will also help understand the pros and
cons of encrypting the data versus the gradients of the model [36].

Secure multi-party computing (SMPC) is a technique used to
perform secure computations over encrypted, unperturbed data.
The data is split across multiple participating servers such that no
single participant can access all the data. Participants perform com-
putations on their share of the data and the results are aggregated
to obtain the final result. Private multi-party ML (PMPML) builds
upon SMPC for running machine learning algorithms on large scale,
distributed data [25]. As with FL, PMPML brings data governance
back to its owners. However preceding PMPML systems adopt a
peer-to-peer communication approach where all peers know each
other. This is a fatal security flaw as a malicious peer can infer
data present at all other peers by forwarding a fabricated model.
InsuLearn, a distributed learning platform for classification and re-
gression of medical imaging data is presented by Amir et al. (2017).
The models are trained at each institute independently and later
combined at secure coordinator nodes. The system was deployed in
a distributed fashion and stress tested for fault tolerance, liveliness
and scalability. The system scales well up to 100 nodes and is able
to continue aggregating models to a reasonable extent as the rate
of node failure is increased. InsuLearn addresses the limitations of
existing PMPML systems with a novel aggregation technique which
is tolerant to malicious peers. The aggregation technique is tested
using 5 ML algorithms and the results are compared to a naive
aggregation scheme and models trained on a centralised dataset.
InsuLearn performs better than naive aggregation for classifica-
tion tasks and slightly worse than insecure warehouse technique
for regression tasks. The system was tested by performing skin
segmentation and regression on Parkinson’s telemonitoring data.
The testing was done however using ML models such as Support
Vector Machines and Random Forest, thus it remains to be seen
if the aggregation technique can be extended to neural networks.
The solution also hinges upon the assumption that the centralised
aggregation node is secure. The authors however fail to propose
protocols to achieve this security [1].

A communication overhead is posed by Federated Learning (FL)
where all participants communicate with the parameter server
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twice: once to upload their local gradients and later to download
the aggregated gradients from the parameter server. This commu-
nication scheme does not scale well with increase in the number
of participants and depth of models. Computation costs also in-
crease at a larger scale since all participating models need to be
trained simultaneously and managing a large number of partici-
pants becomes complicated. Jeon et al. (2019) propose an alternative
solution with the goal of reducing the communication bandwidth
and maintaining computational efficiency. Instead of training full
local networks, only the first layer (L1) is trained locally. The rest of
the network (layers L2 to Lk) are kept on the central server which
is trained using the weights of each participant. Once the training
of the central model is completed, the output of Lk is transmitted to
each participant where the gradients are calculated. The gradients
are transmitted back to the central server where backpropagation
is conducted until L2. The gradient of L2 is transmitted to all par-
ticipants to finally calculate the loss. The communication overhead
is analysed for image classification using CIFAR-10 and CIFAR-100.
Two models, ResNet and VGG are used. The models are trained
using the proposed method and Large Scale Stochastic Gradient
Descent (LSGD) [7]. The communication costs of the new system
are noted to be significantly lower while achieving significantly
higher accuracy compared to LSGD. Compared to FL, participants
communicate with the central server twice as much in the new
system. However, since the participants only communicate the pa-
rameters of a single layer as opposed to an entire network, the
quantity of data communicated is expected to reduce. Empirical
evidence remains to be collected such that the communication over-
head for FL and the new system are analysed. The authors also fail
to compare the performance of their system to centralised train-
ing thus it is difficult to understand how the accuracy of models
is affected by the new distributed protocol. As with FL, the new
system is not inherently privacy preserving since the central server
and participants can still be breached. The distributed nature of
the network may act as protection against model-inversion attacks
however no guarantees can be made if the attacker obtains access
to both the participant and the central server. The computation
burden in the proposed system is shifted to the central server. This
is a clear advantage since the performance of the central server
can be improved by upgrading its hardware, thus removing the
bottleneck posed by the heterogeneous hardware of participating
institutes observed in prior FL systems [12].

4.2 Synchronous Distributed Learning
Distributed training overcomes the limitations of centralised train-
ing at the cost of added complexity. The complexity stems from the
parallel training of several models and the heterogeneity in the net-
work and hardware capabilities of participating institutes. Chang
et al. (2018) hypothesise that synchronous training techniques can
perform just as well as centralised training. In order to validate
this hypothesis, the authors perform analysis of 3 synchronous
learning techniques: 1. Model ensembling (ME) 2. Single weight
transfer (SWT) and 3. Cyclic weight transfer (CWT). ResNet, a CNN
is trained using the learning techniques mentioned above and their
performance is compared to centralised training. 4 institutions are

simulated and the models are trained to perform image classifica-
tion on 3 distinct datasets: retinal fundus images, mammography
and ImageNet. In ME, 4 models are trained separately at each site
and their output is averaged. In SWT, a single model is trained
at the first site until an acceptable learning accuracy is achieved
and then transferred to the other institutes once for fine-tuning.
Finally in CWT, the models are trained at all institutes several
times for specific number of epochs until an acceptable learning
accuracy is achieved. All proposed techniques perform better than
a model trained at a single institute which shows the benefits of
collaborative training. Thorough analysis conducted by the authors
dictate that SWT performs better than ME. CWT performs the best
as its performance is comparable to that of centralised training.
Although the model is trained at each institute several times under
the CWT technique, empirical evidence suggests that no overfitting
occurred. The authors also analysed the effect of transfer frequency
on model accuracy. The outcomes indicate that the model performs
better with a high frequency of transfer with an added cost of
longer training time. The robustness of CWT was analysed next
by testing with and without an institute containing heterogeneous
data. Heterogeneity in the data was introduced by using images
with non-standardised quality, resolution and size. Additionally, the
quantity of data per patient was also not equal in order to simulate
realistic data. The scalability of CWT was analysed by training
the model using 6000 patient samples randomly distributed across
20 institutes. The authors ensured that the model would not be
able to perform better than random classification when trained at
a single institute. The results indicate that CWT is highly robust
and scalable as it is able to achieve accuracy similar to centralised
training when all 20 institutes were used for training. Furthermore,
it is able to maintain this performance as the variability in the data
is increased. Although the authors try to emulate variability of real-
istic data, the emulation is lacking since the data was sampled from
the same dataset. This does not accurately represent the domain
difference observed in reality and further testing using data derived
from unique patient populations is proposed. The analysis was
conducted using CNNs to perform binary classification. Further
experimentation is required to see the effects of CWT for multi-
label classification, performed using other network architectures
such as autoencoders, GANs and RNNs. Finally, the authors fail
to conduct any runtime performance of the synchronous learning
techniques. Specifically, it would have been nice to see analysis on
runtime performance of CWT and FL as the system is scaled. This
analysis would have aided in determining the threshold after which
FL becomes feasible since the network and hardware capabilities of
the participating institutes are non-uniform and thus unpredictable
[6].

Sheller et al. (2018) address the limitations of Chang et al. (2018)
by conducting an analysis of Single Weight Transfer (SWT), Cyclic
Weight Transfer (CWT) and Federated Learning (FL) for image
classification using medical data. Compared to FL, the bandwidth
requirements in SWT are lesser since each participant transmits
the model once and receives it twice, once for training and the
other to receive the final model. A common problem in SWT is the
drop in performance with the increase in number of participants
due to catastrophic forgetting [17]. CWT addresses this issue to
an extent by varying the number of epochs of training at each site.
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Table 2: Summary of privacy preserving techniques (cont.)

Key Dataset(s) Model(s) Performance CommunicationScalability Reliability Runtime Privacy Security
Synchronous distributed learning
chang
2018
dis-
tributed

Proprietary
Retinal
fundus
and mam-
mog-
raphy
and Ima-
geNet

ResNet Accuracy of
model trained
using CWT
similar to
centralised
training

Not evaluated Scalable
upto 20
partici-
pants

Not eval-
uated

Not eval-
uated

Indirect
data leak-
age in
the form
of model
parameters

Model-
inversion
and ad-
versarial
attacks

sheller
2018
multi

BraTS U-Net Accuracy of
model trained
using FL
performs best

SWT consumes
lower band-
width than FL
and CWT

CWT not
scalable
to many
partici-
pants

Not eval-
uated

Not eval-
uated

Indirect
data leak-
age in
the form
of model
parameters

Model-
inversion
and ad-
versarial
attacks

beaulieu
2018
privacy

eICU and
TCGA

CNN AUROC of
model trained
using CWT and
DP improves
as number of
participants
increase

Not evaluated Not eval-
uated

Not eval-
uated

Not eval-
uated

Indirect
data leak-
age in
the form
of model
parameters

Adversarial
attacks

Centralised Learning
wu2019
p3sgd

Proprietary
pathol-
ogy
images

ResNet,
AlexNet,
VGG
and Mo-
bileNet

Slight decrease
in accuracy
when regu-
larized with
P3SGD

NA NA NA Not eval-
uated

NA Adversarial
attacks

Synthetic data generation
torkzadeh
mahani
2019dp

MNIST Logistic
Regres-
sion and
MLP

AUCROC of
models trained
using synthetic
data similar to
real data

NA NA NA NA NA Model-
inversion
and ad-
versarial
attacks

U-Net, a CNN specialising in image segmentation is trained using
the BraTS brain tumour segmentation dataset, using FL, SWT and
CWT. The training is performed using both a skewed distribution of
data amongst institutes (representing realistic data) and a simulated
distribution where each institute is roughly given images for the
same number of patients. FL outperforms SWT and CWT in both
data distributions with CWT performing second best due to some
amount of catastrophic forgetting. Empirical evidence provided
by the authors suggest that SWT and CWT do not scale well to a
large number of institutions with small amounts of data. Authors
additionally show that CWT is infeasible as running validation tests
add communication costs above FL [28].

Beaulieu et al. (2018) apply Differential Privacy (DP) to Cyclic
Weight Transfer (CWT) in an attempt to address the privacy con-
cerns of CWT. The authors test their solution on the eICU Collab-
orative Research Database containing de-identified demographic
data of intensive care patients and the Cancer Genome Atlas dataset

(TCGA) which contains data from breast invasive carcinoma pa-
tients. The model is trained to perform image classification using
4 techniques: 1. centralised 2. centralised with DP 3. CWT and 4.
CWT with DP. The performance of the model trained using tech-
nique 4 is slightly lower than technique 3. The performance of
the model trained using technique 3 is better than technique 2
but not equal to technique 1. The performance of model trained
using CWT and DP is observed to improve as the number of par-
ticipants is increased. Although the proposed solution addresses
the privacy concerns of CWT, the testing distribution is felt to be
unrealistic since each institute is given equal number of examples.
The authors wish to address this limitation in the future by using
secondary models. The secondary or local models are trained only
at their respective institutes in an attempt to capture local trends
and biases. Although the authors claim that the communication
costs are significantly reduced compared to FL, no runtime analysis
is done to support such claims. The performance analysis is also
done only using the AUROC metric without any comments on the
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distribution of the data. Further analysis is required to compare
and contrast CWT with FL when both are put under DP. As with
Chang et al. (2018), the analysis was only conducted with very few
number of participants. This makes it unclear how the proposed
solution scales or how many participants are required before the
performance of the model plateaus. Finally, it is unclear how the
results of the secondary models will be integrated with the global
model and how the final model will be tested. The authors also fail
to conduct any privacy tests in order to determine the quantity of
data leakage and how it compares to FL [3].

4.3 Centralised Learning
CNNs are susceptible to overfit or memorise certain aspects of the
training data [38]. This is a cause for concern when working with
pathological data which contain sensitive information regarding
patients. While FL is a promising solution at a macro scale, Wu
et al. (2019) propose a solution at a micro scale. P3SGD is a novel
regularisation technique for models being trained with pathological
data. Most pathological databases contain several images obtained
from the same patient. Contrary to previous work which focus on
ensuring privacy at the image level, P3SGD utilises Differential Pri-
vacy (DP) to ensure privacy at the patient level which has the added
benefit of reducing overfitting in CNNs. Top image classification
CNNs such as ResNet, AlexNet, VGG and MobineNet are trained
to detect the presence of glomerulus using real pathology images
(image classification task). The models are trained using SGD and
regularised using P3SGD. The performance of the models are then
compared to results obtained when the models are regularised using
state-of-the-art techniques such as Dropout and Batch Normali-
sation. A thorough analysis of the results indicate that there is a
slight decrease in the performance of the models regularised using
P3SGD. A model-inversion attack is additionally performed and
models regularised using P3SGD are found to be resistant to such
attacks. The performance analysis were done using only the accu-
racy of the models. Unfortunately, the authors fail to provide any
information regarding the distribution of the data without which
it is difficult to ascertain the legitimacy of the metrics reported.
P3SGD was developed exclusively for pathological image classifica-
tion and extending it to other tasks is proposed as future work. It
would also be informative to analyse the performance of P3SGD
when models are trained using modern optimisation algorithms
such as AdaGrad and Adam [38].

4.4 Synthetic Data Generation
Preceding literature in the field of synthetic data generation focuses
solely on the generation of images. This, although useful in circum-
stances where data is scarce, cannot be used by supervised models
which require the corresponding labels as well. Torkzadehmahani
et al. (2019) present the first Differentially Private Conditional GAN
(DP-CGAN), a platform for secure training of GANs on sensitive
data. Using Differential Privacy (DP) and the state-of-the-art Renyi
Differential Privacy Accountant (RDP), the system is able to protect
GANs from malicious model-inversion and membership inference
attacks. The MNIST dataset was used to train the model. The syn-
thetic data and label produced was used to train a Logistic Regres-
sion (LR) and a Multi Layer Perceptron (MLP) to classify the digits.

Promising results were obtained as the classifiers trained on data
generated by DP-CGAN obtain similar scores to when the models
are trained using insecure data. The authors report only the AUROC
metric which is not enough information to gauge the capabilities
of the system. Further information such as the distribution of the
data and metrics such as the accuracy, precision, recall and F1 score
should have also been reported. The system addresses the lack of
sensitive data by synthetically generating it. However, sensitive
data is still required to facilitate the synthetic generation. If the
sensitive data is already available, then the value of the solution
proposed is unclear. The systemwas tested using theMNIST dataset
which is publicly available. Although the authors propose to extend
the system to a more challenging dataset such as CIFAR100, exper-
iments with truly sensitive data such as medical imaging would
have been valuable to look at [35].

4.5 Specialised Solutions
ATMOSPHERE is a container-based, federated, Infrastructure as
a Service (IaaS) which can be used to develop medical-imaging
specific applications. Blanquer et al. (2019) present a solution for
early detection of the Rheumatic Heart Disease (RHD) built atop
ATMOSPHERE. RHD when detected in its early stages is curable
but leads to severe health disorders including death if left untreated.
Moreover, the research in the early detection of RHD is limited since
there is no standardised test to indicate positive early stage pres-
ence. CNNs were trained on videos from 4615 echo-cardio studies
to classify data into three categories: 1. Definite RHD 2. Border-
line RHD and 3. No RHD (normal). The federated infrastructure
provided by ATMOSPHERE enables medical facilities across the
globe to collaborate without compromising the privacy of the pa-
tients. The solution is container-based, thus can dynamically scale
based on the demand and utilises the parallel compute power of
GPUs for training. The application development process, network
topology, data access layer and deployment procedure are well
documented. The paper however fails to report the performance
and evaluation of the model itself. Details on the dataset (such as
its distribution), testing methodology and evaluation metrics used
would have presented a complete picture of the capabilities of the
solution presented. Limitations of the work done and possible areas
of improvement would have enabled future work to be conducted.
Finally, the system is not publicly available so it is difficult to gauge
if the project is being actively developed or if an active user base is
present [5].

Kim et al. (2019) present the first client-server system for se-
mantic medical image segmentation with identify preserving, dis-
tributed learning. Inspired by GANs, the system utilises three net-
works: 1. an image encoder 2. a discriminator and 3. a medical
image analysis network (such as a CNN for segmentation in this
case). The image encoder is deployed at the client facilities and
is used to convert the patient data into an obfuscated signal. The
signal which contains enough semantic information, is sent to a
centralised server for further analysis. The discriminator and the
image analysis network are deployed at the server. The discrimi-
nator network is used to identify two signals originating from the
same patient. Finally, the image analysis network is used to perform
the medical imaging task. The results are sent back to the client
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Table 3: Summary of privacy preserving techniques (cont.)

Key Dataset(s) Model(s) Performance CommunicationScalability Reliability Runtime Privacy Security
Specialised Solutions
blanquer
2019
medical

Proprietary
eco-
cardio
data

Not men-
tioned

Not evaluated Not evaluated Not eval-
uated

Not eval-
uated

Not eval-
uated

Indirect
data leak-
age in
the form
of model
gradients

Model-
inversion
and ad-
versarial
attacks

kim2019
privacy

Proprietary
MRI im-
ages

Autoencoder
and CNN

System is able
to obtain good
accuracy with-
out compromis-
ing privacy

Not evaluated Not eval-
uated

Not eval-
uated

Not eval-
uated

No data
leakage

Model-
inversion
and ad-
versarial
attacks

yue2019
privacy

Proprietary
col-
poscopy
and
breast
tissue
biopsy
images

CNN
with
LSTM
cell

System
achieves
higher accu-
racy and lower
false-negatives
compared to
competing
models

Not evaluated Not eval-
uated

Not eval-
uated

Not eval-
uated

No data
leakage

Adversarial
attacks

gibson
2018
niftynet

NA NA NA Not evaluated Not eval-
uated

Not eval-
uated

Not eval-
uated

NA NA

where the image encoder is used to decode the results. The paper
strategically outlines the existing solutions and their limitations
which makes the importance and value of their solution clear. The
system is evaluated using two independent test sets and compared
with the performance when non-encoded images are used. The
results indicate that the system is able to maintain its performance
without compromising the patient’s privacy. Both datasets however
contained MRI images of adult brains which does not highlight
the generalisation capabilities of the network. Further experiments
need to be conducted using datasets with a larger domain shift (for
instance MRI images of infant to adult brains) to identify the gaps
in the model’s ability to generalise. The authors propose to also
expose the system to different image modalities such as MRI and CT
scans in an attempt to improve the model’s generalisation abilities.
Although the proposed system facilitates multi-centre learning,
the performance of the network on a distributed dataset and the
runtime performance of the entire system were not conducted [16].

The dynamic changes in lesions is an important field of study in
medical image analysis. The data for such a task is a succession of
images taken over time which capture the changes that occur in
lesions, commonly known as time-series medical images. Yue et al.
(2019) present HE-CLSTM, a system capable of performing analysis
on encrypted time-series medical images. The system addresses two
short comings of the existing body of work which are: 1. existing
algorithms only support analysis over singular encrypted images
rather than the entire image sequence and 2. the emphasis is put on
improving the accuracy of the algorithms rather than reducing the
false negatives. This is a critical limitation since a missed diagnosis
may result in serious health repercussion for the patient. The system

utilises Homomorphic Encryption (HE) to first encrypt the data
before transferring it to a server where the analysis is conducted
by a CNN equipped with LSTM cells. The system was evaluated
using two independent datasets containing images from colposcopy
and breast tissue biopsy respectively. The system is able to achieve
a substantial improvement in 5 evaluation metrics compared to
competing models. It is able to attain a high accuracy and a low
false negative score by utilising a weighted unit and a sequence
voting layer. Although the paper presents an empirical analysis of
the model’s performance, it fails to conduct any runtime evaluation
of the system. The system was evaluated with a single client but
it would have been helpful to see the performance of the system
when multiple clients share encrypted data with the server [39].

DL models used in medical imaging are typically specialised
towards a specific task or an organ. However there is a substantial
overlap in the implementation and software pipeline of such mod-
els. Medical data is generally enriched with additional metadata
concerning the patient which require to be removed or anonymised
prior to its use. This procedure is often laborious and time con-
suming. After the data has been anonymised, data extraction and
augmentation requires domain knowledge as they are derived from
the task and organ of concern. To reduce duplication of work and
facilitate an easy way to share scientific models, Gibson et al. (2018)
present NiftyNet. NiftyNet is a deep learning platform which fa-
cilitates common medical tasks using deep learning. The platform
provides existing solutions to common infrastructural needs for
medical imaging such as data loading, data augmentation, loss func-
tions and evaluation metrics. The platform also provides a database
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containing pre-built and pre-trained deep learning models com-
monly used in medical imaging. NiftyNet hides away the technical
complexity of building DL models thus allowing researchers to
rapidly generate prototype models for tasks such as image segmen-
tation and regression. NiftyNet is still in its infancy as the platform
supports only a handful of models to serve as proof-of-concept. The
platform does not contain state-of-the-art models and lacks sup-
port for image classification, registration and pathology detection.
NiftyNet relies on users to provide the data and thus fails to cater
to scenarios where the data is distributed across several users. The
authors also fail to comment on the privacy and security aspect of
the system as the emphasis is put on technical aspect [10].

5 DISCUSSION
This study identified 15 papers that presented techniques to train
Deep Learning (DL) models using sensitive data, without violat-
ing the privacy concerns of the patients. The techniques can be
broadly classified into 3 categories: 1. Synthetic data generation 2.
Centralised training and 3. Distributed Training. While majority
of the papers presented a distributed training solution, the study
was able to identify two papers which presented a solution using
synthetic data and centralised training respectively. An overview
of privacy-preserving deep learning is presented in Figure 1.

The synthetic data generation technique is felt to be a viable
solution to address the lack of data at remote medical institutes or
for rare diseases. Since the synthetic data has a similar distribution
to the original data, model-inversion and membership inference
attacks can still be carried out on the DL network to reveal the
original data. Additional data privacy techniques such as Differen-
tial Privacy (DP) or Homomorphic Encryption (HE) can be used
to secure the models. However training conducted using synthetic
data does not fix the bias in the models, only amplifies it. This
technique is thus felt to be appropriate for testing proof-of-concept
models using local data only.

In the occasion that the model does not require to be trained
using data across multiple institutes or in regions where the privacy
laws are relaxed, a centralised training approach can be adopted.
However, this is a rare possibility as bulk of the cases require a
distributed approach. Two approaches of training, namely, syn-
chronous and asynchronous are identified amongst the distributed
training techniques. Cyclic Weight Training (CWT) is identified
as the most suitable synchronous technique in which a model is
trained at each institute several times, in a pre-determined or ran-
dom order. In contrast, asynchronous training techniques such as
Federated Learning (FL) and Secure Multi-Party Machine Learning
(SMPML) train multiple models in parallel and utilise a parameter
server to aggregate the results. Occam’s Razor dictates that CWT,
being the simpler technique, be chosen where possible. However,
due to the large communication overhead it poses, it becomes in-
feasible when training across many institutes. The requirement
for further analysis is felt to determine the exact threshold beyond
which the added complexity of distributed training is warranted.
Additional research is also required to determine how well FL sys-
tems scale since addition of every new participant or increase in
the depth of the neural networks, add to the communication and
computation costs.

None of the techniques mentioned so far are inherently privacy-
preserving and require the aid of data privacy techniques. Differen-
tial Privacy (DP) and Homomorphic Encryption (HE) are identified
as the two most common privacy techniques used across all train-
ing protocols. DP introduces a trade-off between the performance
of the model and the privacy of the patients by probabilistically
injecting noise into the dataset. While the presence of more noise
ensures higher privacy, it also negatively affects the performance
of the model. Currently, the DP limit for a given dataset is set by
the medical institutes who own it, ideally the limit should be set
by the patients themselves. Consider a scenario where a patient P
first visits an institute A for MRI scans and later another institute
B for a second opinion such that both institutes are in possession
of P’s data. Individually, the institutes may set a DP limit of 0.1 for
their patients before sharing their data. However a total of 0.2%
of P’s data is then shared which might not be acceptable to P. In
contrast, HE originating from the field of cryptography, enables DL
models to operate directly over unperturbed, encrypted data. HE is
able to lift the trade-off noted in DP for a higher runtime cost. HE
is felt to be the most secure data privacy technique and its use is
recommended when privacy is of utmost importance and runtime
is not a concern.

Compared to centralised training, the data leakage in distributed
training is drastically reduced through indirect leakage of model
parameters only. However, distributed training techniques are vul-
nerable to model-inversion and inference attacks which can exploit
a small quantity of leaked gradients in order to reconstruct the
dataset. DP and HE can be employed in an attempt to safeguard the
privacy of the patients however the DL models themselves remain
vulnerable to adversarial and data poisoning attacks. These attacks
may not breach the privacy of the patients but can raise concerns
regarding the robustness of the models. Another alarming outcome
is that the attacks may change the predictions of the model which
may lead to the incorrect diagnosis thereby putting the patient’s
life at risk. While model parameters and data secured with HE are
resistant to brute force attacks, they can however be de-crypted if
the attacker is in possession of sufficient quantity of plaintext and
its corresponding cyphertext.

The field of privacy-preserving deep learning is somewhat para-
doxical in nature. While the goal is to develop systems and tech-
niques to privately train DL models using medical data, such data
is not publicly available. The existing research is thus restrained to
experiments conducted using centralised data repositories which
do not accurately depict the domain shift observed in truly dis-
tributed data. The research is also limited primarily to Multi Layer
Perceptrons (MLPs) and Convolutional Neural Networks (CNNs),
trained using Stochastic Gradient Descent (SGD), to perform classi-
fication tasks. The need for further research is felt to train other
types of neural networks such as Generative Adversarial Networks
(GANs), Recurrent Neural Networks (RNNs) and Autoencoders us-
ing modern optimisation algorithms such as AdaGrad, Adam and
RMSProp for tasks besides image classification. Taking a step back,
if a distributed learning system using one of the techniques pro-
posed above were to be constructed, the ownership of such a system
is unclear at this point. For instance, who would be responsible for
it construction and maintenance? How will the project be financed?

10



1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

Systematic Literature Review of Privacy-Preserving Deep Learning in Medical Image Analysis , ,

1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496

Trained model

A singular global model is 
constructed.

Data privacy techniques

Reduce privacy threats by means 
of Differential Privacy or 
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Figure 1: Summary of privacy-preserving deep learning

And where will the parameter server for the asynchronous tech-
niques be located geographically? Construction of such a system
not only requires a joint initiative from all participating institutes
but also warrants the development of legislative policies to ensure
a fair and conflict free operation of the system. Small medical insti-
tutes, in remote geographical locations will benefit the most from
such a technological advancement. However, since they are unable
to contribute due to lack of data and infrastructure, concerns are
raised regarding the accessibility of the system to small medical
institutes.

6 CONCLUSION
Medical Image Analysis is an indispensable aspect of medical sci-
ence that is highly sensitive to human error. Artificial Intelligence
such as Deep Neural Networks have had tremendous success in the
field and have helped reduce the burden from their human coun-
terparts. Neural networks are however “data hungry” and require

vast amounts of sensitive, medical data to learn. Besides the grow-
ing privacy concerns raised by training DL models using private
medical data, it is also difficult to obtain such an immense quantity
from a single institute. This paper conducted a systematic review to
identify and analyse the existing solutions that can be used to train
DL models in a private manner. In order to accomplish such a task,
research questions were first developed to help identify relevant
papers to be included in the review. These papers were then held
against certain inclusion-exclusion criterion to obtain a final list
of papers. The selected papers were then reviewed in full and data
extracted from the papers were analysed. In light of the results
obtained through this review, the research questions are revisited
below.

RQ1. What are the existing systems, platforms or techniques that
facilitate deep learning on medical images that do not invade
the patient’s privacy?
This review identified several privacy-preserving systems
and solutions which can be used to train DL models. The
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identified techniques were broadly classified as per three
guiding principles, namely: centralised learning, distributed
learning and synthetic data generation. While interesting
techniques were discovered under synthetic data generation
and centralised learning, the most prominent techniques ap-
proached the problem in a distributed fashion. All solutions
utilised additional data privacy techniques to ensure privacy
and security of the patient’s data. Differential Privacy (DP)
and Homomorphic Encryption (HE) were the most prominent
with the former being computationally simpler and the later
being more secure.

RQ2. What are the top performing deep learning models being used
to perform tasks in medical imaging?
Heterogeneity in the training techniques, the neural net-
works trained, the datasets used and the model performance
metrics reported, posed a challenge in the identification of
the top performing DL model. The nature of medical image
analysis is such that it requires the DL models to be trained
with highly specialised datasets to perform a single task for
a specific organ. The need for additional research is felt to
identify the top performing DL architectures. This effort is
to be conducted such that the DL models, the tasks they
perform and the evaluation metrics used are standardised.
One place to start could be to analyse the results of Kaggle
competitions for medical imaging tasks.

RQ3. What are the specific attacks that can compromise the security
of these systems?
All solutions, without the aid of data privacy techniques are
vulnerable to model-inversion and model inference attacks.
The solutions are tolerant to such attacks by using data pri-
vacy techniques such as DP and HE. Additional measures are
required to protect the models themselves from adversarial
and data poisoning attacks.

RQ4. What is the amount of data leakage in these systems?
Distributed learning techniques drastically reduce the data
leakage compared to centralised learning. Since the data re-
mains on-site and only select parameters are shared with the
parameter server, there is still indirect data leakage. These
leaked model parameters - no matter how small - can be
exploited by attacks to reconstruct fragments of the original
dataset, thus compromising the privacy of the patients. The
data leakage can be minimised by sharing less model param-
eters, using a lower DP limit or by encrypting the parameters
and data.

In this era of “big data’, where many are becoming conscious of
how their data is being used, privacy-preserving deep learning is
gaining momentum. Being the first of its kind, this systematic re-
view hopes to be valuable to researchers working at the intersection
of medical science and artificial intelligence. With the existing solu-
tions discussed, attention is now drawn to two avenues of research
which remain unexplored.

By and large, Medical Imaging data such as MRI and CT scans,
are volumetric in nature. The state-of-the-art solutions require
the three dimensional data be segmented into a two dimensional
format, resulting in loss of valuable information. Geometric Deep
Learning (GDL) is a new field of research, focused on developing

deep learning models which are able to train using volumetric data.
As such, the application of GDL to MIA remains open for further
investigation.

The last decade has ushered in tremendous progress in the field
of deep learning. The field was re-energised after the discovery
of Convolusional Neural Networks that revolutionised computer
vision and enabled neural networks to surpass humans in pattern
recognition and image classification tasks. Since then, deep learning
has been widely adopted in fields such as robotics and natural lan-
guage processing, and has received recognition for solving difficult
problems. The exact inner workings of neural networks are still
however unclear, thereby raising serious ethical concerns regard-
ing their application in medical science. Hybrid intelligence is a
new field of research which seeks to enhance the human intellect
using artificial intelligence, rather than replacing it. Additionally,
Bayesian Deep Learning is another exciting field of research which
is tasked with the creation of DL models that provide a measure of
uncertainty to the predictions they make. Developments in these
field may be beneficial to privacy-preserving deep learning since it
will enable humans to view the outcomes of neural networks with
a sense of trust.
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