
Vrije Universiteit Amsterdam Universiteit van Amsterdam

Master Thesis

KM3NeT Neutrino Detection using Deep
Learning

Author: Arumoy Shome (2636393)

1st supervisor: Dr. Adam Belloum
2nd supervisor: Dr. Ben van Werkhoven (Netherlands eScience Center)
2nd reader: Dr. Ronald Bruijn

A thesis submitted in fulfillment of the requirements for
the joint UvA-VU Master of Science degree in Computer Science

October 29, 2020

Abstract

Neutrinos are highly elusive subatomic particles which can only be detected

with the help of large particle detectors. The KM3NeT neutrino telescope is one

such detector currently being constructed at the bottom on the Mediterranean

Sea. Due to its large volume and the presence of background noise, “event

trigger” algorithms are utilized by the data acquisition pipeline of the detector

to sift through the noise. A GPU Pipeline was also developed to improve the

quality of filtration of the event trigger algorithms without compromising their

runtime performance. Despite these efforts, the quality of filtration require

further improvements. The goal of this paper is to improve upon the GPU

Pipeline using Artificial Neural Networks. The paper explores the possibility of

replacing parts of the GPU Pipeline using Multi Layer Perceptrons and Graph

Convolutional Neural Networks. The Multi Layer Perception performs better

compared to the existing solution while the results of the Graph Convolutional

Network are inconclusive in its existing form. Overall, the outcome is promising

and new avenues of research are discovered through this work.

Keywords: Neutrino detection, Artificial Neural Network, Multi Layer Percep-

tion, Deep learning, Graph Neural Networks, Geometric Learning, KM3NeT.

Acknowledgements

I would like to thank Dr. Adam Belloum and Dr. Ben van Werkhoven for

introducing me to the fascinating field of neutrino detection and giving me the

opportunity to be a part of the KM3NeT research initiative in collaboration

with Nikhef and Netherlands eScience Center. I would like to especially thank

Dr. Belloum for his guidance and support throughout the project. Many thanks

to Dr. Roel Aaij, Dr. Ronald Bruijn and Brian O Fearraigh for their technical

support on the physics side of things. Finally my gratitude and best wishes to

my colleague Shruti Rao who is also defending her thesis in the coming months.

Contents

List of Figures iv

List of Tables vi

1 Introduction 1

1.1 Problem Statement . 2

1.2 User Requirements . 3

1.3 Research Question . 3

2 The Data 6

3 Related Work 10

3.1 Event Trigger Algorithms . 10

3.2 Deep Learning in Particle Physics . 11

3.3 Deep Learning in KM3NeT . 12

3.3.1 The GPU Pipeline by Karas et al. (2019) 12

3.3.2 Limitations of The GPU Pipeline . 15

4 Replacement for Hit Correlation Step 16

4.1 Data Preparation . 16

4.1.1 Preparation of Training Data . 17

4.1.2 Preparation of Testing Data . 18

4.2 Model Description . 18

4.3 Model Evaluation . 19

4.4 Results . 22

5 Replacement for Graph Community Detection Step 25

5.1 Primer on Graph Convolutional Neural Networks 25

5.2 Data Preparation . 27

ii

CONTENTS

5.3 Model Description and Evaluation . 28

5.4 Results . 29

6 Recommendations 32

6.1 On the MLP . 32

6.2 On the GCN . 33

6.3 On Independence of the Models . 34

6.4 On the Runtime Performance . 35

7 Conclusion 37

Bibliography 40

iii

List of Figures

1.1 Artist’s impression of the ARCA detector source: https://www.km3net.org . 2

1.2 An optical detector (DOM) source: https://www.km3net.org 2

2.1 Correlation matrix of features . 8

2.2 Distribution of label column . 8

2.3 Verification of Bias . 9

2.4 Distribution of Timeslice 615 . 9

2.5 Distribution of event hits per timeslice . 9

3.1 Overview of GPU Pipeline . 13

3.2 Shapes and arrangements of data in the GPU Pipeline. 14

4.1 Overview of MLP dataset creation procedure. 16

4.2 Distribution of MLP training dataset. 16

4.3 Learning Curve of MLP Training and Validation Datasets. 22

4.4 ROC Curves for MLP Test Datasets. 23

4.5 PR Curves for MLP Test Datasets. 23

4.6 Confusion Matrices of MLP Test Datasets. 24

5.1 Message passing paradigm of GCNs. 26

5.2 Overview of GCN dataset creation procedure. 27

5.3 Learning Curve for GCN. 29

5.4 TSNE for GCN training dataset. 30

5.5 CM for GCN Test Datasets. 30

5.6 TSNE for GCN Test Datasets with naive edge weights. 31

6.1 TSNE for GCN test datasets with advanced edge weights. 33

6.2 CM for GCN test datasets with advanced edge weights. 34

iv

LIST OF FIGURES

6.3 Illustration of a possible training set for the graph classification model. . . . 35

v

List of Tables

2.1 Description of columns . 7

2.2 Descriptive statistics . 8

4.1 Distribution of MLP Training and Validation Datasets. 18

4.2 Distribution of MLP Test Datasets. 18

4.3 MLP Model Parameter Summary. 19

4.4 MLP Model Architecture Summary. 19

4.5 Summary of MLP performance across test sets. 22

5.1 Distribution of GCN testing datasets. 28

5.2 GCN Model Parameter Summary. 28

5.3 GCN model architecture summary. 29

5.4 Summary of GCN performance across test sets. 29

6.1 Advanced edge weight scheme for GCN. 32

6.2 Summary of GCN performance across test sets with advanced edge weights. 34

vi

1

Introduction

Perhaps the most elusive subatomic particle known to science is the Neutrino. With no

electrical charge (thus aptly named) and mass smaller than any other elementary particles,

neutrinos pass through matter making them virtually undetectable. Neutrinos are sought

after by researchers, especially those in the fields of Astrophysics and Astronomy since

they may help gain insights into astronomical events such as the birth of a neutrino star

or a supernova.

When neutrinos experience a change in the density of the matter they are traveling

through (such as going from air into water), they experience a change in velocity and emit

an electron and a photon. This phenomenon is known as Cherenkov Radiation (1) and is an

indirect method which can be used to detect neutrinos. This remains the premise for some

of the worlds largest neutrino observatories built to date such as the Sudbury Neutrino

Observatory (Ontario, Canada), The Super-Kamiokande (Gifu Prefecture, Japan) and The

IceCube Neutrino Observatory (Antarctica).

The KM3NeT or the Cubic Kilometer Neutrino Telescope is the next generation neutrino

telescope, currently being constructed at the bottom of the Mediterranean Sea. The goal

of this research infrastructure is two fold. First, to study high-energy neutrinos originating

from celestial events in the galaxy. And second, to study the properties of the neutrino

particles produced in the Earth’s atmosphere (2). The first goal will be realized with the

KM3NeT/ARCA (Astroparticle Research with Cosmics in the Abyss) telescope and the

second with KM3NeT/ORCA (Oscillation Research with Cosmics in the Abyss) (2). This

thesis talks exclusively about KM3NeT/ARCA.

1

1. INTRODUCTION

Figure 1.1: Artist’s impression of the ARCA detector source:
https://www.km3net.org

Figure 1.2: An
optical detector
(DOM) source:
https://www.km3net.org

1.1 Problem Statement

The ARCA telescope comprises of two “blocks” with a total volume of 1km3. Each block

consists of 115 spherical detector units (DOMs) and each DOM consists of 31 Photo Multi-

plier Tubes (PMTs) in various spatial arrangement. Figure 1.1 shows an artist’s impression

of ARCA and figure 1.2 depicts a DOM along with the PMTs inside it. The PMTs are

highly sensitive to light (photons), and thus are used to detect the Cherenkov Radiation

emitted from the neutrino particle interactions. All hits are recorded by the PMTs in

the form of analog signals and those above a certain threshold are digitized. The digital

signals from all PMTs are arranged in 100ms “timeslices” and sent to the on-shore facility

for further processing (3).

Unfortunately, there are several sources of noise like bioluminescense, decay of Potassium

40 (40K) and atmospheric Muons (4). Due to the high level of noise, data is generated at an

extremely high rate of 25GB/sec (2) and must be filtered and selectively stored for further

analysis. The state-of-the-art for this task are known as “Event Trigger” algorithms (2, 3)

which can filter timeslices containing just noise thus only allowing important timeslices

containing neutrino hits to pass through. The existing event trigger algorithms, namely

L1 and L2 although able to conduct the filtration in near real time, lack the ability to

do so with high accuracy thus often failing to save important timeslices (5). Efforts have

already been made to improve the existing event trigger algorithms. Karas et al. (2019)

proposed and implemented a GPU powered pipeline which utilizes correlation and graph

community detection to identify time slices that may contain neutrino hits whilst Post et

2

1.2 User Requirements

al. (2019) suggest an alternate using convolutional neural networks.

1.2 User Requirements

The primary users of ARCA are researchers who want to study high energy particles from

outer space. The stakeholders comprise of all 57 member institutes involved in the project

and by extension all scientists from these institutes who will be working with the data

collected. The requirements of the primary users and stakeholders with respect to the

data acquisition pipeline are as follows.

UR1. The accuracy of filtration must be extremely high.

Time slices that are deemed important by event trigger algorithms are stored for

further analysis and research. Failure to store timeslices containing information from

neutrino events can lead to loss of important data and hinder new discovery. Since

majority of the data generated is noise, the pipeline must be able to prevent storage

of unnecessary timeslices containing only noise in the on-shore facility.

UR2. Filtration should occur in real time.

The state-of-the-art event trigger algorithms are able to process data in real time.

The proposed alternative should be able to provide better data filtration quality

whilst maintaining or improving upon its predecessor’s runtime performance.

1.3 Research Question

This thesis presents research to improve upon the GPU Pipeline proposed by Karas et al.

(2019) to combat the limitations of the L1 and L2 event trigger algorithms. Specifically

this project seeks to answer the following research questions.

RQ1. Can the existing GPU pipeline be improved using Neural Networks?

Data exploration presented in Chapter 2 reveals that the dataset is devoid of any cor-

relations and trends amongst the features. Traditional machine learning algorithms

will thus require the aid of feature engineering to obtain valuable results. Since an

abundance of data is available, the need for feature engineering can be circumvented

by using Artificial Neural Networks. This decision is also supported by Chapter 3

which presents existing literature showcasing the application of neural networks in

the field of Particle Physics.

3

1. INTRODUCTION

Improvement may be achieved by reducing the processing time of the pipeline or

improving the accuracy with which relevant timeslices are identified. This project

focuses on achieving improvement via accuracy. The task of validating the runtime

performance of the methods proposed in this thesis is left to a separate project. In

order to answer RQ1, the following additional questions are formulated.

RQ2. Can the Hit Correlation Step be replaced with a Multi Layer Perceptron?

The first step of the GPU Pipeline is the Hit Correlation Step. A novel trigger

criterion was proposed which when given a pair of points, can quantify their level

of correlation with an accuracy of 80%. The first phase of this project focuses on

exploring an improvement to this trigger criterion using a Multi Layer Perceptron

(MLP).

RQ3. Can the Graph Community Detection Step be replaced with a Graph

Convolutional Neural Network?

The output of the Hit Correlation Step is used to create a graph structure where hits

from neutrino and noise are represented as nodes connected with an undirected edge

carrying the probability of correlation as its weight. The Constant Potts clustering

algorithm, which operates on the principles of Graph Community Detection (6),

was used to separate the graph into communities of neutrino and noise hits. The

second phase of this project focuses on achieving a better accuracy for clustering

neutrino and noise hits into separate communities in a given timeslice using Graph

Convolutional Neural Networks (7).

The following chapters present the research efforts carried out to improve The GPU

Pipeline using Artificial Neural Networks. In Chapter 2, the steps taken to prepare the

dataset is presented followed by its statistical analysis and visual exploration. Since this re-

search initiative is based on the seminal work conducted by Karas et al. (2019), an overview

of the GPU Pipeline is presented in Chapter 3 in addition to other related projects. Chap-

ters 4 and 5 present detailed analysis of the neural networks created to replace segments

of The GPU Pipeline. Drawing from the results of the replacement models, practical

recommendations and directions for further research are laid out in Chapter 6.

This thesis is intended for the primary users of ARCA with the hope to aid in the devel-

opment of the successor to the state-of-the-art event trigger algorithms. The report may

also be used by deep learning practitioners working in the field of neutrino detection. This

thesis assumes the reader posses a background in Computer Science or Artificial Intelligence

4

1.3 Research Question

and thus is familiar with concepts such as statistics, linear algebra and optimization. The

reader is expected to have basic understanding of the guiding principals of Deep Learning

such as Feed-Forward Neural Networks, backpropagation, binary classification and model

evaluation metrics.

5

2

The Data

At the time of undertaking this project, the KM3NeT Neutrino Telescope was still under

construction, thus simulated data provided by Nikhef was used. The data itself was pro-

vided in two parts namely events and noise datasets, both of which came from different

sources and in different formats. The events dataset was provided as a 42MB HDF5 (Hi-

erarchical Data Format) file consisting of the /data/mc_hits and /data/mc_info tables.

For the purposes of this project, the two tables were combined such that each row in the

mc_hits table contains its corresponding ’event_id’ from the mc_info table. A label col-

umn was added containing a value of ’1’ and the resulting table (henceforth referred to as

the events dataset) was saved as a CSV file.

The noise data was generated using a Python library implemented and maintained

by Nikhef, k40gen. k40gen.Generators(21341, 1245, [7000., 700., 70., 0.]) was

used to create an instance of a generator where the first two arguments are random seeds

followed by a list of rates at which single, double, triple and quadruple hits should be

generated. The generator instance is then passed into k40gen.generate_40() method

which returns a (4, n) array containing as rows time (t), dom_id, pmt_id and time over

threshold (tot)). The position coordinates (ie. x, y and z coordinates) for each datapoint

was provided in a positions.detx file which was parsed using the Numpy Python package

(8) and added to the noise array. The Python library Pandas (9) was used to convert the

array into a (n, 4) dataframe. A label column was added containing a value of ’0’ and

the dataframe was saved as a 3.9GB CSV file.

To create the main dataset for the project, the events and noise datasets were com-

bined. Both datasets were read into memory as Pandas dataframes and their columns

were renamed for consistency. The two dataframes were concatenated and sorted based

on the time column. Rows with negative time were dropped along with columns which

6

were not relevant to this project. The time column was discretised into 15000ns bins and

the resulting values were added to the timeslice column. The resulting dataframe was

saved as a 1.9GB CSV file. The main dataset was explored using statistical analysis and

visualizations to observe any patterns and “local trends” that may be present. Due to the

high number of data points, a random sample of 10% of the data was taken in order to

draw reasonable conclusions from the plots.

Table 2.1: Description of columns

Column Data
type

Unit Description

x, y, z float meters (m) The position within the detector where the hit
was detected, they represent the x,y,z coordi-
nates of the hit respectively.

t float nano sec-
onds (ns)

The time at which the hit was detected.

label int NA The type of hit, ’0’ represents noise and ’1’ rep-
resents a neutrino hit

event_id int NA The id of the event to which the hit is related
to. The id itself does not have any meaning, it is
simply used to identify hits that originated from
the same event.

timeslice int NA The id of the timeslice to which the hit belongs.
The id itself does not have any meaning, it is
simply used to group hits into discrete bins.

Table 2.2 presents the descriptive statistics of the dataset. The dataset consists of 7

columns (or features) and roughly 4.5 million rows. Table 2.1 provides more information

on the columns of the dataset. The dataset does not contain any nan or null values

except for the event_id column where rows containing noise hits are not associated with

any event. Next, the correlations amongst the features are checked using the "Pearson"

correlation and depicted by a correlation matrix in Figure 2.1. No significant correlations

are observed between x, y, z and t which indicates that ML models may not be able to

learn anything from the dataset without the aid of feature engineering. The distribution of

the label column is presented in Figure 2.2. A severe class imbalance was noted between

events and noise hits. The dataset contains 489906 instances of events compared to over 4

million instances of noise. An effective strategy to handle the class imbalance was devised

during training of models to prevent overfitting.

7

2. THE DATA

Figure 2.1: Correlation matrix of features Figure 2.2: Distribution of
label column

Table 2.2: Descriptive statistics

x y z t label event_id timeslice
count 4.58e+7 4.58e+7 4.58e+7 4.58e+7 4.58e+7 489906 4.58e+7
mean 1.16e-02 -1.59e-02 1.17e+02 5.00e+07 1.06e-02 2862.00 3.33e+03
std 5.12e+01 6.22e+01 4.86e+01 2.89e+07 1.02e-01 1667.61 1.92e+03
min -9.46e+01 -1.15e+02 3.77e+01 0.00e+00 0.00e+00 0.00 0.00e+00
25% -4.50e+01 -5.79e+01 7.40e+01 2.50e+07 0.00e+00 1392.25 1.66e+03
50% 1.30e+00 -4.18e+00 1.21e+02 5.00e+07 0.00e+00 2887.00 3.33000e+03
75% 4.04e+01 4.85e+01 1.60e+02 7.50e+07 0.00e+00 4304.75 5.00000e+03
max 9.62e+01 1.05e+02 1.96e+02 1.01e+08 1.00e+00 5734.00 6.77e+03

The dataset is derived from synthetically generated data using simulations. As such, it

is likely that the event hits in each timeslice may occur at a specific time such as at the

beginning, middle or end of the timeslice. Having such a pattern in the dataset may bias

the model since it may learn this pattern and thus fail to generalize. If this pattern does

exist in the dataset, corrective measures need to be taken such that the event hits in each

timeslice are uniformly distributed. To verify the existence of such patterns in the dataset,

the mean time of event hits across all events was visualized as a scatter plot as depicted

by Figure 2.3. A uniform distribution is noted with no visible patterns indicating no bias

exists in the dataset and it is deemed suitable for further analysis.

The dataset is discretized into 6759 timeslices of which 2783 timeslices contain only noise

hits. This is corroborated by Figure 2.5 which presents a skewed distribution where many

timeslices contain few to no event hits and few timeslices contain a high number of event

hits. Figure 2.4 depicts a scatter plot of timeslice 615 which contains the largest number

of event hits. It is observed that event hits occur close to each other in space and time

8

Figure 2.3: Verification
of Bias

Figure 2.4: Distribution
of Timeslice 615

Figure 2.5: Distribution
of event hits per timeslice

(represented by the yellow, blue and green points) whilst background hits are uniformly

distributed in space and time (represented by the purple points).

9

3

Related Work

This chapter presents an overview of the existing body of work which are related to this

project. Additionally, an overview of the GPU Pipeline by Karas et al. (2019) is also

presented here as the research presented in this thesis improves upon this seminal work.

The chapter concludes with the limitations of the GPU Pipeline and motivates the need

of a new pipeline.

3.1 Event Trigger Algorithms

Adrian et al. (2016) present L0, L1, L2, the state-of-the-art event trigger algorithms

currently used by the KM3NeT data acquisition pipeline. The L0 trigger applies a threshold

to the analog signals in the PMTs and poses as the first level of filtration before the data

is transferred to the on-shore facility. At the on-shore facility, the L1 filtration is applied

by identifying coincidences of two or more L0 hits originating from different PMTs within

the same DOM in a time window of 10ns. The time window is deduced by studying the

scattering of light in deep sea. A final L2 filtration is applied to reduce the occurrence

of random coincidences from background noise by half. It is able to do so by taking into

account the known spatial orientation of the PMTs (2). An improvement upon the above

event trigger algorithms was first proposed by Bakker et al. (2011). In their paper, the

authors introduce the Match 3B Criterion to identify causally related hits. The criterion

operates by observing the distance between two hits and comparing it to the distance that

a photon is known to travel in sea water (10).

10

3.2 Deep Learning in Particle Physics

3.2 Deep Learning in Particle Physics

Deep Learning has been an integral part of Particle Physics experiments (11, 12, 13, 14,

15) including but not limited to real time analysis and particle property prediction (11).

Study of exotic particles such as Higgs boson, anti matter, dark matter and quarks is a

highly sought after topic in this field. However, exotic particles are extremely difficult

to detect due to the presence of negligible charge and mass. Once created, they are

highly unstable and quickly decay into more stable forms (12). Thus to study exotic

particles, the conditions prevalent during the Big Bang are recreated in large collision

experiments such as the ones conducted in the Large Hadron Collidor (LHC). Since the

particles cannot be detected directly, the collision chambers are fitted with a plethora of

sensors and detectors to collect the direction and momentum of each particle in order to

recreate the collision event (12). These experiments produce data in the order of magnitude

of Petabytes, majority of which is just noise. To give an example, the LHC produces 1011

particles out of which only 300 may be a Higgs boson (12). Due to the availability of

an abundance of data and the “data hungry” nature of Neural Networks, the adoption of

Deep Learning (DL) for solving large scale problems in the field was only a natural step.

Based on a study on the use of Machine Learning in neutrino experiments conducted by

Psihas et al. (2020), DL models such asMulti Layer Perceptrons (MLPs) and Convolutional

Neural Networks (CNNs) have been applied to a variety of physics problems such as design,

hardware triggers, energy estimation, reconstruction and signal selection. Many ML models

have replaced their statistical predecessors since they provide better results (14).

Radovic et al. (2018) present a notable application of DL in the discovery of the Higgs

boson particle from data generated by the LHC collision experiments. The same paper

makes use of CNNs and Recurrent Neural Networks (RNNs) for identification of beauty-

quark particles where the data was represented in a graph structure (11). Sadowski et

al. (2015) employed ML techniques to reduce the dimensionality of the raw dataset and

compared the performance of shallow and deep MLPs for identification of Higgs boson

particles. CNNs have been widely adopted for event recreation tasks since the data is

often represented in the form of images (12). Terwilliger et al. (2017) present such an

application where CNNs were used for neutrino vertex reconstruction which is a technique

used to identify the origin of neutrino event using detector data represented as images (15).

All particle physics problem share the problem of having a high noise to signal ratio

in their datasets and Machine Learning (ML) techniques have been used to tackle this

problem (16, 17, 18, 19). In the deep sea environment in which the ANTARES neutrino

11

3. RELATED WORK

telescope resides, Random Forest and Boosting Trees were used for signal classification (19).

Li et al. (2018) created a liquid neutrino detector toy model to replicate the conditions

posed by the JUNO detector. The image data generated by the toy model was used to

train CNNs to perform signal-noise discrimination and the model was able to outperform

the existing solutions (17). Choma et al. (2018) used Graph Neural Networks to perform

signal-noise detection using data collected by the IceCube detector and the model was able

to outperform physics based methods and CNNs (18). Above the ground, Mulmule et al.

(2020) proposed the use of MLPBNN a Bayesian extension of MLPs for signal-background

detection of anti-neutrinos in the ISMRAN experiment. The performance of the model

is better compared to the previously used statistical models based on likelihood estimates

(16).

3.3 Deep Learning in KM3NeT

Under the umbrella of the KM3NeT research initiative, three scientific works of rele-

vance to this project exist. The earliest being the paper by De Sio et al. (2019) which

presents the application of CNNs for tasks such as event-type and particle identification,

energy/direction estimation, source identification, signal/background discrimination and

data analysis. The ML models provide better results compared to the reconstruction

models. Moreover, they alleviate the requirement for reconstruction models altogether

by extracting relevant features from the raw data directly (13). Post et al. (2019) ap-

plied CNNs along with Long Short Term Memory (LSTM) (20) for event triggering using

simulated KM3NeT data. The model performs a multi-class classification amongst hits

originating from noise, neutrinos and atmospheric muons. The model has promising re-

sults as it is able to attain an accuracy of 80% (4). Karas et al. (2019) built upon the idea

of causally related hits by Bakker el al. (2011) and present a data processing pipeline to

filter timeslices containing neutrino events from those containing only noise. The pipeline

is able to achieve this filtration by processing the data in 3 steps, illustrated in Figure 3.1

and described in more detail below (5).

3.3.1 The GPU Pipeline by Karas et al. (2019)

The first step of The GPU pipeline is the Hit Correlation step which proposes The Pattern

Matrix Criterion (PMC) to identify hits which may have originated from the same neutrino

event, referred to as causally related hits. From domain knowledge, it is known that related

hits occur close to each other both in space and time. Specifically, the space and time

12

3.3 Deep Learning in KM3NeT

Figure 3.1: Overview of GPU Pipeline

difference of related hits is found to be 100m and 300ns respectively (2). The PMC operates

by creating a correlation criterion based on the probability that the aforementioned space

and time difference occurs between two related hits. Pairs of hits (from both events and

noise) are passed to the PMC as input, the output being an adjacency matrix where related

hits are assigned a high score whilst unrelated hits are assigned a lower score. The algorithm

is evaluated with a dataset containing 130 event hits and 5000 noise hits. Results in the

range of 0.3 - 0.375 is reported for the recall, precision and F1 metrics and an accuracy

of 80% is achieved. Due to the stocastic nature of hits, unrelated hits such as noise-event

or noise-noise pairs may occur within this predefined range thus being falsely identified as

related. This is rectified in the next step of the pipeline.

The second step of the GPU Pipeline is the Graph Community Detection (GCD) step.

The main dataset is modeled as a graph where hits are represented as nodes. All nodes

are connected with each other and carry the probability of being related as weights, using

the output of the PMC. The Constant Potts Model (CPM) (21) is used to group the nodes

into separate communities (or clusters) of related and unrelated hits. The model is tested

using a dataset consisting of 130 event hits and 5000 noise hits and performs exceptionally

well as it is able to group most event hits into a single community and the noise in another.

Since the GCD step directly operates on the data derived using the Hit Correlation step,

communities may still contain noise nodes. Thus, the third and final step of the pipeline

classifies given communities as event or noise communities based on the exclusive presence

of event nodes. This can be done by observing two properties of the graph, namely the

size of the communities and the density of edges within the communities. Communities

consisting exclusively of event nodes are of small sizes and have high edge density whilst

communities consisting a mix of event and noise nodes or only noise nodes will be relatively

larger and have lesser edge density. The two parameters which aid in the classification are

the Probability Threshold (PT) of the PMC and the CPM resolution parameter (γ) of the

GCD step. The PT and γ are grid searched to determine their optimal thresholds. All

13

3. RELATED WORK

hits above the specified thresholds are classified as event communities and the rest as noise

communities.

Figure 3.2: Shapes and arrangements of data in the GPU Pipeline.

Figure 3.2 provides a visual representation of the various shapes and arrangements of

the data as it passes through the pipeline. Sub figure (1) shows an example dataset for the

pipeline where each row represents a hit consisting of the (x, y, z, t) vector. The input to

the Hit Correlation Step is all unique pairs of hits as shown in sub figure (2). Sub figure (3)

shows the output of the Correlation Step which is a vector containing the probability that

the pairs of hits are related to each other. The data from sub figure (1) and (3) are used to

construct a graph representation of the dataset as illustrated in sub figure (4). Event hits

(illustrated as red, orange and blue circles) and noise hits (grey circles) are represented as

nodes and are connected by an undirected edge carrying as weight the probability of being

related. For simplicity, the edges are omitted in the figure. The graph from (4) acts as the

input to the Graph Community Detection step. The output of (4) is shown in sub figure

(5) which is another graph where event and noise nodes are grouped together and thus are

linearly separable from each other.

14

3.3 Deep Learning in KM3NeT

3.3.2 Limitations of The GPU Pipeline

Although The GPU Pipeline is able to identify timeslices with neutrino event hits more

accurately compared to its predecessors (5), the pipeline still has certain limitations which

hinders its performance. The space and time difference based on which the PMC deter-

mines if two hits are causally related to one another is static. This may result in related

hits which do not meet these thresholds to be incorrectly given a low score. Alternatively,

due to the stocastic nature of hits, event-noise and noise-noise pairs which fall within the

thresholds may also occur and these will be incorrectly given a high score. The commu-

nities created by CPM is influenced by the edge weights provided by the PMC, thus any

limitations of the PMC cascades down into the later steps of the pipeline. Furthermore,

the classification step also operates on static values of the PT and γ and thus is unable to

identify communities of size smaller than 20 hits.

Instead of deriving the correlation thresholds manually, a Neural Network can be used

to learn the optimal values instead. This idea is further explored in Chapter 4 where a

MLP is used to classify related and unrelated hits. The choice of a MLP is motivated by

existing literature which demonstrates its success with signal-noise discrimination (14, 16).

Recently, the field of Geometric Deep Learning has gained popularity with some exciting

developments of models which are designed to operate upon graph structures. Once such

development is the Graph Convolutional Neural Network (GCN) proposed by Kipf et al.

(2016). The limitations of the Graph Community Detection and Classification steps may

be alleviated by using a GCN to classify event and noise nodes, and is explored in Chapter

5. The choice of a GCN is motivated by the graph data structure of the Graph Community

Detection step and by existing literature that validates the application of GCNs for neutrino

detection (18).

15

4

Replacement for Hit Correlation Step

This chapter presents the replacement created using a Multi Layer Perceptron (MLP)

for the Hit Correlation Step of the GPU Pipeline proposed by Karas et al. (2019). It

is observed that a MLP is able to identify causally related hits with a higher accuracy,

precision and recall compared to the PMC. The chapter begins by explaining how the data

is created followed by its visual examination. The training and testing procedure for the

model is explained next. The chapter concludes with discussions of the experiment results

and next steps.

4.1 Data Preparation

Figure 4.1: Overview of MLP dataset creation procedure. Figure 4.2:
Distribution of
MLP training
dataset.

Figure 4.1 summarizes the MLP dataset creation process. As an example, a main dataset

containing 5 rows is shown in sub figure (1). The MLP dataset is generated from the main

dataset and consists of all unique pairs of hits. With an input data of shape (n, 4) (n rows

16

4.1 Data Preparation

and 4 columns representing x, y, z, and t), an output data of shape ((n2), 9) is obtained.

Algorithmically, this is done by pairing each hit with the subsequent hits below it as

demonstrated with the use of colors in sub figure (2). The output dataset consists of 9

columns due to the presence of x, y, z and t columns of two hits plus the label column.

The label column is populated based on the values of the event_id column of the two

hits. The row is assigned a label of 1 if the two hits have the same event id. This signifies

that they originated from the same neutrino event and hence are causally related to each

other. If the event id of the two hits are not the same then they are assigned a label of 0.

Better model performance was observed when the model was trained with the difference

between hits in time and space. Sub figure (3) shows the final dataset of shape ((n2), 5)

obtained - the first 4 columns being the difference of x, y, z and t vectors of the paired

hits and the last column being the label. The data is additionally scaled between [0, 1]

due to empirical evidence showing improvement of model performance and prevention of

vanishing gradients during training (22, 23).

4.1.1 Preparation of Training Data

The main dataset is highly skewed, with the majority or negative class being hits from

background noise and the minority or positive class being hits from neutrino events.

Thus, the training set created is also skewed with the minority class being related hits and

majority class being unrelated hits. To maximize the number of positive examples in the

training set, a random sample was taken from the top 5 timeslices of the main dataset with

the most number of event hits. The model is required to classify related and unrelated hits

which can be done by observing the space and time difference between the given points.

Since this phenomenon is consistent across the entire main dataset, training using a sample

does not introduce any bias into the model.

The training set still however contains a skewed distribution of examples, and training

the model with such a dataset will result in a model that is biased to the majority class. To

combat this problem, the majority class is undersampled such that the number of examples

for each class is the same. Figure 4.2 shows the distribution of a random sample of the

training set. It is observed that the related hits occur close to one another in space and

time whilst the noise hits are scattered throughout which should aid the model to learn.

A fraction of the training set is kept as a holdout or validation set to evaluate the model’s

training. Table 4.1 presents the distribution of the training and validation sets.

17

4. REPLACEMENT FOR HIT CORRELATION STEP

Table 4.1: Distribution of MLP Training and Validation Datasets.

Total examples Positive examples Negative examples
Training 48,434 24,217 24,217
Validation 23,856 11,928 11,928

4.1.2 Preparation of Testing Data

Whilst the training dataset contains equal number of examples for each class, the testing

dataset maintains its skewed distribution since this represents realistic data which the

model will be required to classify. Four variants of the testing dataset with varying levels

of examples of related hits were created as listed in Table 4.2. In practice, the pipeline will

observe timeslices which contain no to very few related hits, thus the performance of the

model on TS1 and TS2 are of vital importance.

Table 4.2: Distribution of MLP Test Datasets.

Total examples Positive examples Negative examples
TS1 774,390 – 774,390
TS2 5,829,405 10 5,829,395
TS3 5,880,735 1176 5,879,559
TS4 364,231 8,372 355,859

4.2 Model Description

The expectation of the model is to identify if two given points are causally related to each

other or not. As revealed through data exploration in Chapter 2, hits originating from

neutrino events occur close to each other in space and time. Thus, the expectation from

the model is to learn this phenomenon by training over pairs of points and classifying

unseen data as related or unrelated.

The model architecture is summarized in Table 4.4. It consists of an input layer, two

hidden layers and an output layer. The network is fully connected with 4 neurons in the

input layer, 16 neurons in the first hidden layer, 8 in the second hidden layer and finally

1 neuron in the output layer. The optimal value of all parameters stated above were

identified either empirically or from recommendations presented in literature (22, 23). The

number of epochs used to train the model is not mentioned above since this parameter is

18

4.3 Model Evaluation

Table 4.3: MLP Model Parameter Summary.

Loss BCELoss
Optimizer Adam
Learning rate 0.001
Hidden activation function ReLU
Output activation function Sigmoid
Training batch size 16
Testing batch size 32

largely determined by the dataset, batch size and the learning rate, thus its value varied

per experiment.

The parameters of the model are summarized in Table 4.3. The Adam optimizer with a

learning rate of 0.001 is used to optimize the loss function. This combination is considered

a reasonable start for many optimization problems and has been empirically proven to

outperform other algorithms such as Stocastic Gradient Descent (SGD), RMSProp and

Adagrad (24). Being a binary classification task, the Binary Cross Entropy Loss (BCELoss)

(also known as Log Loss) was selected as the loss function since it has been established as

the standard loss function for binary classification tasks (25). As the BCELoss function

expects an input in the range of [0, 1], the Sigmoid activation function was chosen for the

output layer. The ReLU activation function was chosen for the hidden layers since it is

generally considered a good start for most problems (26, 27). A batch size of 16 is used for

the training and validation sets whilst a larger batch size of 32 is used for the testing set

since these value are often recommended as good defaults by machine learning practitioners

(22, 23).

Table 4.4: MLP Model Architecture Summary.

Layer Position Type Activation In features Out features
1 Linear ReLu 4 16
2 Linear ReLU 16 8
3 Linear Sigmoid 8 1

4.3 Model Evaluation

The model is evaluated using metrics typical to binary classification tasks. Additionally,

metrics geared towards skewed datasets are considered as well.

19

4. REPLACEMENT FOR HIT CORRELATION STEP

1. Accuracy. The accuracy is the ability of a model to classify unseen data correctly

and is mathematically defined by Equation 4.1.

Accuracy =
Number of correct predictions
Total number of examples

(4.1)

2. Learning Curve. The Learning curve is a line plot of the loss over the training

epochs. A model with a good fit results in a loss curve which approaches 0 with

time.

3. Confusion Matrix (CM). For highly skewed data, accuracy is not a good metric

for evaluating the model performance (28) since it may achieve a high score by

simply predicting the majority class. Thus the CM is used to visualize the number

of true positive (TP), true negative (TN), false positive (FP) and false negative (FN)

predictions of the model.

4. Recall. The recall is the ability of the model to correctly identify the minority class.

For this problem, the recall of the model is given precedence over its precision. This

is because the model should be able to identify all instances of the positive class

since this determines if the timeslice will ultimately be saved or not. The recall is

mathematically defined by Equation 4.2.

TP

TP + FN
(4.2)

5. Precision. The precision is the ability of the model to not misclassify an instance

of the negative class (ie. classify it as the positive class). Although this should also

be high, it is often inversely proportional to recall. The precision is mathematically

defined by Equation 4.3.

TP

TP + FP
(4.3)

6. F1 score. The F1 score is the harmonic mean of the precision and recall, thus it

is a single metric to summarize the model’s performance based on its precision and

recall. The F1 score is a value between [0, 1] with a value close to 1 indicating high

precision and recall. The F1 score is mathematically defined by Equation 4.4.

2 ∗ (Precision ∗Recall)
Precision+Recall

(4.4)

20

4.3 Model Evaluation

7. F2 score. Since recall is given precedence for this problem, the F2 score can be

considered a better alternative to the F1 score as it gives higher importance to the

recall through the β parameter. The F2 score is mathematically defined by Equation

4.5. Thus the F2 score with β = 1 is equivalent to the F1 score.

(1 + β2) ∗ Precision ∗Recall
(β2) ∗ (Precision+Recall)

(4.5)

8. Receiver Operating Characteristic (ROC) curve is a plot of the true positive

rate (TPR) and the false positive rate (FPR) (mathematically defined by Equations

4.6) across various discrimination probability thresholds of the model. The ROC

curve can be interpreted as the fraction of correct predictions for the positive class

(along the y-axis) versus the fraction of error in predictions for the negative class

(along the x-axis). The area under the ROC curve (ROCAUC) can be used to

summarize the ROC curve with a singular value. Thus, a highly skilled model has a

ROC curve which arches from (0, 0) to (1, 1) with a ROCAUC between 0.5 and 1.0.

Whilst the ROC curve of a model without any skill is a straight line from (0, 0) to

(1, 1) with a ROCAUC of 0.5.

TPR =
TP

TP + FN

FPR =
FP

FP + TN

(4.6)

9. Precision-Recall (PR) Curve can be considered a better alternative to the ROC

curve since the ROC curve can be overly optimistic of the model’s skill when dealing

with highly skewed data since it considers the model’s performance for both the

classes. In contrast, the PR curve is a diagnostic plot of the model’s precision and

recall across various discrimination probability thresholds of the model. Thus the

PR curve only considers the model’s performance with regards to the positive class.

Similar to the ROC curve, the PR curve can also be summarized by the area under

the curve or the PRAUC. A skilled model, thus has a PR curve which bows towards

(1, 1) whilst a model with no skill is a horizontal line.

21

4. REPLACEMENT FOR HIT CORRELATION STEP

4.4 Results

Figure 4.3 shows the learning curve of the model on the training (blue line) and validation

(orange line) tests. The curves approach zero with time and remain in close proximity to

each other indicating a good fit. Table 4.5 summarizes the model’s performance across

the various test sets (see Section 4.1.2). In general, the model performs well with high

accuracy and recall across all test sets. The model achieves almost perfect recall for TS2

and TS3 which have extremely low positive examples which speaks to its strength. The

poor precision scores can be attributed to the skewed nature of the datasets. Since the

FPs are relatively high compared to the TPs in the datasets, the precision falls drastically

(see Equation 4.3). This is also corroborated by the fact that the recall in TS4 increases

due to a better FP:TP ratio (see Figure 4.6).

Figure 4.3: Learning Curve of MLP Training and Validation Datasets.

Table 4.5: Summary of MLP performance across test sets.

Accuracy Precision Recall F1 F2 ROCAUC PRAUC
TS1 0.80 – – – – – –
TS2 0.91 0.00 1.00 0.00 0.00 0.99 0.00
TS3 0.92 0.00 0.98 0.00 0.01 0.98 0.01
TS4 0.92 0.19 0.83 0.31 0.48 0.96 0.33

The ROC curves paint a different picture (see Figure 4.4) with exceedingly large areas

under the curve. This however is misleading since ROC curve takes into account the

performance for both the positive and negative classes and thus tend to be overly optimistic

of the model’s performance on skewed datasets (28, 29). In such circumstances, The PR

22

4.4 Results

(a) ROC curve for TS2. (b) ROC curve for TS3. (c) ROC curve for TS4.

Figure 4.4: ROC Curves for MLP Test Datasets.

curves are considered better at gauging a model’s skill when dealing with skewed datasets

(28). However, in this case it too is deemed misleading as it significantly undermines the

model’s performance (see Figure 4.5). This again is attributed to the precision approaching

zero due to the extremely skewed FP:TP ratio which results in the PRAUC to also be zero.

(a) PR curve for TS2. (b) PR curve for TS3. (c) PR curve for TS4.

Figure 4.5: PR Curves for MLP Test Datasets.

Figure 4.6 depict the confusion matrices for the various test datasets. The confusion

matrices highlight the strengths and weaknesses of the model better than the ROC and

PR curves. The model has a very low number of FNs and FPs which is extremely valuable

as this ensures that the model does not miss hits from neutrino events and also does not

classify hits from noise sources incorrectly as hits from neutrino events.

23

4. REPLACEMENT FOR HIT CORRELATION STEP

(a) CM for TS1. (b) CM for TS2.

(c) CM for TS3. (d) CM for TS4.

Figure 4.6: Confusion Matrices of MLP Test Datasets.

24

5

Replacement for Graph Community
Detection Step

This chapter presents the replacement created using a Graph Convolutional Neural Net-

works (GCNs) as proposed by Kipf et al. (2016) for the Graph Community Detection Step

of the GPU Pipeline. It is observed that a GCN is able to identify event nodes very well

however is severely biased to them thus unable to distinguish between event and noise

nodes. The chapter begins with an overview of GCNs and how they have been applied to

this problem. The data preparation and model evaluation are touched upon next. The

chapter concludes with discussion of the results.

5.1 Primer on Graph Convolutional Neural Networks

GCNs are designed to operate on data consisting of entities and their relations, commonly

referred to as graphs. A graph G = (V,E) consists of a set nodes (V) and a set of edges

(E). Each node may or may not be connected to one or many nodes. These are referred

to as the neighbors of the node. A graph with all nodes connected to one another is

called a fully connected graph. An edge may have attributes associated with it, the two

most common attributes being weight and direction. An edge (u, v) ∈ E between two

nodes u and v may be directed which denotes a sense of hierarchy amongst the nodes, an

example being a graph which models how Twitter users follow one another. An edge may

also undirected such as a graph which models the friendship amongst the users of a social

network (since friendship is mutual). An edge may also have a weight to signify a stronger

or weaker connection amongst nodes. Nodes may also posses attributes associated with

themselves, commonly known as node embeddings. The complexity of the node embedding

25

5. REPLACEMENT FOR GRAPH COMMUNITY DETECTION STEP

may range from a simple scalar quantity to a multi-dimensional tensor, and depends on

how the dataset is modeled as a graph.

Graphs are primarily classified into two variants namely homogeneous and heterogeneous

graphs. Homogeneous graphs have the same type of entities and relations represented as

nodes and edges respectively. For example, a graph representing the social network consist-

ing of people and their connections is a homogeneous graph. In contrast, Heterogeneous

graph consist of different types of nodes and edges. For example, a graph representing

a person’s likes and dislikes in regards to food items. Here, two entities, namely people

and food are represented as nodes. The edges also come in two variants ie. a ’like’ and a

’dislike’.

Figure 5.1: Message passing paradigm of GCNs.

GCNs learn by utilizing a message passing paradigm which is summarized in Figure

5.1, using a fully connected graph of 5 nodes as example. During each training epoch, all

nodes propagate their embedding to their neighbors (illustrated in sub figure (2)). The

collected embeddings are then aggregated (for example using a sum, difference or mean)

which becomes the new embedding for the node. Sub figure (3) illustrates the resulting

graph structure after the aggregation procedure. If an embedding is propagated through an

edge carrying a weight then the embedding is scaled by that value. This procedure is done

for all nodes of the graph, for each training epoch. The number of layers in the network

determine how far the messages are sent. For example, for a network with a single layer,

each node aggregates the embeddings from their immediate neighbors. With 2 layers, the

node also aggregates embeddings from the neighbors of its immediate neighbors and so

forth.

26

5.2 Data Preparation

Figure 5.2: Overview of GCN dataset creation procedure.

5.2 Data Preparation

The graphs for the testing and training of the network are constructed from a combination

of the main dataset and a modified version of the MLP dataset, Figure 5.2 illustrates this

procedure. As observed in Section 4.4 Figure 4.6, the MLP model predictions contain false

negatives. Using the predictions, a graph can be constructed such that only related nodes

are connected. This however would lead to the total loss of the event hits which were

incorrectly classified as noise. Thus a fully connected graph is constructed, and its node

embeddings and node labels are derived from the main dataset. Each node is assigned a

(x, y, z, t) vector as its node embedding. The node is assigned a label of 1 if it is an event

hit, else a label of 0 to denote noise. A modified MLP dataset (see 4.1) with a shape of

(n2−n, 5) is created such that each hit is paired with all other hits except itself. The label

column from this dataset is then used as the edge weights of the graph. Edges between

event nodes from the same event thus are assigned a weight of 1 and all other edges are

assigned a weight of 0.

Since the main dataset and the MLP dataset are highly skewed, the GCN dataset is also

27

5. REPLACEMENT FOR GRAPH COMMUNITY DETECTION STEP

skewed with majority of the nodes being noise. Similar strategy as used in the creation

of the MLP training set (see 4.1) is used. The training set is a graph with approximately

1000 nodes equally distributed amongst the classes. The skewed nature of the data is

maintained in the testing sets. The model is evaluated with 3 test sets, each with varying

levels of event nodes. In practise, the pipeline will observe timeslices with no to very few

events, thus the performance of the model on test set 1 and 2 should be given importance.

The various test sets and their distribution are summarized in Table 5.1.

Table 5.1: Distribution of GCN testing datasets.

Total examples Positive examples Negative examples
TS1 1000-1500 – 1000-1500
TS2 1000-1500 10-20 990-1480
TS3 1000-1500 200-250 800-1250

5.3 Model Description and Evaluation

Table 5.2: GCN Model Parameter Summary.

Loss BCELoss
Optimizer Adam with learning rate of 0.001

Hidden Activation ReLu
Output Activation Sigmoid

The model is expected to classify nodes of an unseen graph as event or noise nodes.

Since causally related nodes are connected with edges carrying a high weight, the model

is expected to group them together resulting in a final graph with separate clusters of

causally related nodes and noise nodes. The parameters of the model are summarized in

Table 5.2. The rational for selecting the parameters remains the same as that of the MLP

model (see 4.2) since both models perform binary classification. The difference comes from

the model architecture which is summarized in Table 5.3. The GCN model comprises of

an input layer, two graph convolutional layers and an output layer. The network is fully

connected with 4 neurons in the input layer, 16 in both graph convolutional layers and 1

neuron in the output layer. A dropout layer is added between the two Gconv layers to

prevent overfitting (30). The same evaluation metrics are used (see Section 4.3) since the

GCN dataset is also highly skewed in nature.

28

5.4 Results

Table 5.3: GCN model architecture summary.

Layer position Type Activation In features Out features
1 GConv ReLU 4 16
2 dropout – –
3 GConv RelU 16 2
4 Linear Sigmoid 2 1

5.4 Results

Figure 5.3: Learning Curve for GCN.

Table 5.4: Summary of GCN performance across test sets.

Accuracy Precision Recall F1 F2 ROCAUC PRAUC
TS1 0.52 – – – – – –
TS2 0.58 0.04 1.00 0.08 0.18 0.87 0.06
TS3 0.67 0.40 1.00 0.57 0.77 0.81 0.36

A good fit is achieved by the model during training as seen in Figure 5.3. In addition

to the model’s performance on the various test sets as summarized by Table 5.4, the node

embedding of the training and testing graphs are also inspected using t-SNE (31). Figure

5.4 shows the node embedding of the training before and after training. It is interesting to

note that the model is able to learn as clusters of similar nodes are noticed after training.

Inspecting Figure 5.6 one can see the model’s inability to cluster similar nodes in the

testing sets. Very scarce communities are observed in TS1 and TS2 with the model only

being able to cluster the event nodes in TS3. The model is biased to the minority class

29

5. REPLACEMENT FOR GRAPH COMMUNITY DETECTION STEP

(a) Before training. (b) After training.

Figure 5.4: TSNE for GCN training dataset.

as is seen in the Confusion Matrices depicted in Figure 5.5. The model is able to identify

all event nodes in TS2 and TS3 perfectly however has a high number of FPs in all 3 test

sets. This indicates that the presence of the high edge weights assigned to causally related

nodes greatly aids the model in identifying the event nodes. However, since all other edges

are assigned a weight of 0, the model does not quite learn to identify the noise nodes.

(a) CM for TS1. (b) CM for TS2. (c) CM for TS3.

Figure 5.5: CM for GCN Test Datasets.

30

5.4 Results

(a) TS1 before. (b) TS2 before. (c) TS3 before.

(d) TS1 after. (e) TS2 after. (f) TS3 after.

Figure 5.6: TSNE for GCN Test Datasets with naive edge weights.

31

6

Recommendations

This chapter presents practical recommendations for the readers who wish to use the new

data processing pipeline presented in this thesis. The chapter also presents alternative

paths of research which remain unexplored and general improvements that can be made

to the pipeline in the future.

6.1 On the MLP

The Multi Layer Perceptron presented in Chapter 4 is capable of identifying causally

related hits with a higher accuracy, precision and recall compared to the Pattern Matrix

Criterion presented by Karas et al. (2019). It is therefore considered a viable successor to

the PMC. Although experiments were done to identify the optimal parameters such as the

batch size, optimization function, learning rate, height and depth of the network, further

experimentation is recommended before it is integrated into the Data Acquisition Pipeline.

The model also showed an increase in the number of FPs when the number of positive class

examples increased. It may be possible to correct this bias by adding some regularization

into the model (23).

Table 6.1: Advanced edge weight scheme for GCN.

Node type(s) Edge weight
noise-noise 1.0
event-event (causally related) 1.0
event-event (causally unrelated) 0.5
event-noise 0.1

32

6.2 On the GCN

6.2 On the GCN

The GCN obtained in Chapter 5 has a perfect recall however is also significantly biased

to the positive class (event nodes) and thus unable to identify the negative class (noise

nodes). The origin of the problem can be traced back to the edge weights being applied

to the graph. The weights supplied by the MLP only take into account edges between

causally related and unrelated hits. In reality however, unrelated hits consists of various

sub categories: 1. noise-noise hits 2. noise-event hits and 3. causally unrelated event-

event hits. Although from a physics point of view the pairs of hits listed above are in

fact causally unrelated, this naive edge weight scheme does not allow the GCN to learn

adequately. The root cause of this conflict is based in the fact that the two models have

contradictory goals. Whilst the MLP is trained to identify causally related and unrelated

hits, the GCN is required to identify hits originating from neutrino events and noise. The

solution is simple and requires assigning edge weights based on the nodes that it connects

as summarized in Table 6.1. The GCN model is trained using the advanced edge weight

scheme and the results are promising as observed in Figure 6.2 and 6.1. The model now

has perfect discriminatory skills for both classes even in the extremely skewed datasets like

TS2.

(a) TS1 after. (b) TS2 after. (c) TS3 after.

Figure 6.1: TSNE for GCN test datasets with advanced edge weights.

Although the GCN is now capable of identifying event and noise nodes with immaculate

accuracy, precision and recall, it however classifies all examples as false positives in TS1

which contains no event nodes. The model is impeded by the high weights on edges between

causally related event nodes and noise nodes, which may be corrected by framing the data as

a multi-edge heterogeneous graph. By creating different types of edges corresponding to the

33

6. RECOMMENDATIONS

(a) CM for TS1. (b) CM for TS2. (c) CM for TS3.

Figure 6.2: CM for GCN test datasets with advanced edge weights.

various types of connections that two nodes may posses, each carrying the corresponding

weights, the network may be able to correct its bias to the positive class. In order to obtain

the advanced edge weight, the MLP must be modified such that it performs multi-class

classification on the edge types. For a classification problem of n edge types, the output

of the MLP will thus become a (n,) vector containing the expected probability for each

class. These probabilities can then be used as the edge weights. The MLP may not be able

to discern causally unrelated hits since they are spread evenly in space and time. Thus

research to identify an appropriate model for the task is required. One such approach

may be to use a GCN to perform classification of the edge types or regression on the edge

weights (32).

Table 6.2: Summary of GCN performance across test sets with advanced edge weights.

Accuracy Precision Recall F1 F2 ROCAUC PRAUC
TS1 0.00 – – – – – –
TS2 1.00 1.00 1.00 1.00 1.00 1.00 1.00
TS3 1.00 1.00 1.00 1.00 1.00 1.00 1.00

6.3 On Independence of the Models

There is a high dependency on the Hit Correlation Step by the subsequent steps of the GPU

Pipeline. The output of the PMC is used by these subsequent steps so any shortcomings

of the PMC cascade down affecting the performance of the latter steps and the pipeline

as a whole. This dependency is also present in the new pipeline as the performance of

the MLP directly dictates the performance of the GCN. This dependency is not ideal and

34

6.4 On the Runtime Performance

Figure 6.3: Illustration of a possible training set for the graph classification model.

an effective solution to make the models independent is required. One such solution is

to explore the possibility of replacing the entire pipeline with a single GCN. The data

can be framed such that the (x, y, z) vectors are used as the node embedding. If the

t is scaled between [0, 1] and the complement of ∆t is assigned as the edge weights, it

should result in a graph where edges between causally related nodes carry a high weight.

After convolution, a reasonable expectation is the presence of small and tightly connected

communities of causally related nodes and large, weakly connected communities of noise

nodes (illustrated in Figure 6.3). The GCN model can now be modified to perform graph

classification (33) instead of node classification. The premise being that presence of small,

densely connected communities indicate the timeslice is important and thus should be

saved for further analysis. Alternatively, the Line Graph Neural Network proposed by

Chen et al. (2017) built specifically for community detection can also be used.

6.4 On the Runtime Performance

The models presented in this thesis were tested in isolation. The intended usage however is

to use them in tandem in order to identify timeslices containing neutrino event hits. Thus

it is recommended that the models be tested as an integrated pipeline so that the results

may be compared to that of the GPU Pipeline. Additionally, performance of the pipeline

should be observed using various permutations of the individual parts of the new and the

old pipeline to determine the best performing combination overall. As noted in Section 1.2,

the runtime performance of the pipeline is crucial and should be able to perform filtration

in near real time. As neural networks can be parallelized using the compute power of

35

6. RECOMMENDATIONS

GPUs, the models should be capable of meeting the requirements. Several existing work

also indicate the feasibility of scaling GCNs to parallel computation over large graphs

(34, 35, 36). However the data preparation for the models presented in Section 4.1 and 5.2

may pose a bottleneck since they are not instantaneous. Of course at this point these are

merely speculations and empirical proof still requires to be gathered.

36

7

Conclusion

This thesis presented the research undertaken to validate the application of Deep Learning

for neutrino detection in the KM3NeT detector. In light of the results obtained from the

empirical experiments, the research questions are revisited below. Research questionsRQ2

and RQ3 are answered first followed by RQ1 which was the main research question of the

project.

RQ2. Can the Hit Correlation Step be replaced with a Multi Layer Perceptron?

The Hit Correlation Step can be replaced with a Multi Layer Perceptron to identify

causally related hits. The first phase of this project focused on improving the Hit

Correlation Step of the GPU Pipeline using a Multi Layer Perception. In Chapter 4

the training and evaluation of such a model was presented. The model outperformed

the existing Pattern Matrix Criterion and was able to identify causally related hits

with higher accuracy, precision and recall in highly skewed test sets.

RQ3. Can the Graph Community Detection Step be replaced with a Graph

Convolutional Neural Network?

This research question remains open for further exploration due to the inconclusive

results obtained from experiments conducted in this thesis. The outcomes of the sec-

ond phase of this project were described in Chapter 5. Here, the Graph Convolutional

Neural Network to replace the Graph Community Detection and the Classification

Step of the GPU Pipeline was presented. The performance of the model was not ideal

since it was biased to the positive class and unable to identify the negative class in

the test sets.

RQ1. Can the existing GPU pipeline be improved using Neural Networks?

37

7. CONCLUSION

The MLP is felt to be a viable successor to the Pattern Matrix Criterion due to its

superior performance. Although the outcome of the GCN model was unfavorable,

the report urges that the recommendations for its improvements be explored before

dismissing Graph Neural Networks. Altogether, the project is deemed a success as

the outcome is sufficient to indicate that Deep Learning can be used to improve the

performance of the existing GPU Pipeline.

Although the outcomes of this thesis are deemed successful, a few key challenges faced

along the way are worth reflecting upon. Existing literature recommends the use of

precision-recall curves to evaluate the model performance for skewed datasets. For the

KM3NeT dataset however, this was not the ideal metric due to the severely skewed distri-

bution of the classes. Most timeslices consist of noise hits in the order of millions but less

than a hundred event hits. This yields an extremely low precision, even if the model has

only a thousand false positives which is not bad overall.

A rise in the number of false negatives was noticed in the MLP model with an increase of

positive class examples (see Section 4.4 and Figure 4.6). This is a cause for concern since

these are causally related hits which will be filtered out, resulting in loss of important

data for future research. For the GCN model, a solution to fix the bias was proposed in

Section 6.2 that requires the data to be modeled as a heterogeneous graph. This can be

computationally expensive and complicates the data preparation procedure. The solution

to both problems stated above is seen in the recommendation proposed in Section 6.3. The

recommendation proposed a single GCN model to power the entire pipeline using a data

preparation methodology that persists the homogeneous graph structure and renders the

MLP model obsolete altogether.

The Pytorch Geometric library was used to construct the graph neural networks imple-

mented in this thesis. Although this library is being actively developed and has the support

of a healthy open source community, documentation and support from the maintainers was

felt to be lacking. The Viltstift compute cluster provided by Nikhef was used in this thesis

which contained AMD GPUs requiring Pytorch to be built from source. Due to the lack

of support for AMD GPUs in Pytorch Geometric, all experiments pertaining to the GCN

model were conducted on Google Colab. Additional restrictions on memory and disk space

posed by Google Colab limited the scale of experiments to small graphs consisting of no

more than 1000 nodes. Although the small scale experiments sufficiently demonstrated the

promising role of Graph Neural Networks in neutrino detection, the need for more large

scale experiments is observed.

38

The KM3NeT research initiative seeks to unravel the mysteries of the Earth and the

Universe by studying the elusive neutrino particles. The Data Acquisition Pipeline (DAP)

plays a critical role in this multi-million euro project since all research efforts hinge upon

a sole component - the data. The data collected through the DAP dictates the quality

and value of all future research thus it must be able to filter out noise with unparalleled

speed and accuracy. This thesis presented research which can aid in this endeavor using

Deep Learning. It is one of the very few research projects within the KM3NeT sphere

to apply Deep Learning to the field of Particle Physics. It is also amongst a handful of

projects that explore the application of Graph Neural Networks for neutrino detection.

This thesis hopes to have sufficiently contributed towards the development of the next

generation event trigger algorithms. Being one of the few to apply Graph Neural Networks

for neutrino detection, this thesis hopes to have laid the foundation for future graph based

applications.

39

Bibliography

[1] Annarita Margiotta, KM3NeT Collaboration, et al. The KM3NeT

deep-sea neutrino telescope. Nuclear Instruments and Methods in Physics Re-

search Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,

766:83–87, 2014. 1

[2] Silvia Adrian-Martinez, M Ageron, F Aharonian, S Aiello, A Albert,

F Ameli, E Anassontzis, M Andre, G Androulakis, M Anghinolfi, et al.

Letter of intent for KM3NeT 2.0. Journal of Physics G: Nuclear and Particle

Physics, 43(8):084001, 2016. 1, 2, 10, 13

[3] Sebastiano Aiello, Fabrizio Ameli, Annarita Margiotta, Michel Andre,

Giorgos Androulakis, Marco Anghinolfi, Antonio Marinelli, Gisela An-

ton, Miquel Ardid, Christos Markou, et al. KM3NeT front-end and

readout electronics system: hardware, firmware, and software. Journal of

Astronomical Telescopes, Instruments, and Systems, 5(4):046001, 2019. 2

[4] Maarten Post. "KM3NNeT" A neural network for triggering and classifying raw

KM3NeT data. PhD thesis, Universiteit van Amsterdam, 2019. 2, 12

[5] Konrad Karaś. Data processing pipeline for the KM3NeT neutrino telescope. PhD

thesis, Universiteit van Amsterdam, 2019. 2, 12, 15

[6] Santo Fortunato. Community detection in graphs. Physics reports, 486(3-

5):75–174, 2010. 4

[7] Thomas N Kipf and Max Welling. Semi-supervised classification with

graph convolutional networks. arXiv preprint arXiv:1609.02907, 2016. 4

[8] NumPy - The fundamental package for scientific computing with Python.

6

40

https://numpy.org/

BIBLIOGRAPHY

[9] Pandas. 6

[10] B Bakker. Trigger studies for the Antares and KM3NeT neutrino telescopes. PhD

thesis, Master’s thesis, University of Amsterdam, 2011. 10

[11] Alexander Radovic, Mike Williams, David Rousseau, Michael Ka-

gan, Daniele Bonacorsi, Alexander Himmel, Adam Aurisano, Kazuhiro

Terao, and Taritree Wongjirad. Machine learning at the energy and

intensity frontiers of particle physics. Nature, 560(7716):41–48, 2018. 11

[12] Peter Sadowski, Julian Collado, Daniel Whiteson, and Pierre Baldi.

Deep learning, dark knowledge, and dark matter. In NIPS 2014 Workshop on

High-energy Physics and Machine Learning, pages 81–87, 2015. 11

[13] Chiara De Sio. Machine Learning in KM3NeT. 207:05004, 2019. 11, 12

[14] Fernanda Psihas, Micah Groh, Christopher Tunnell, and Karl Warbur-

ton. A Review on Machine Learning for Neutrino Experiments. arXiv

preprint arXiv:2008.01242, 2020. 11, 15

[15] Adam M Terwilliger, Gabriel N Perdue, David Isele, Robert M Patton,

and Steven R Young. Vertex reconstruction of neutrino interactions using

deep learning. In 2017 International Joint Conference on Neural Networks (IJCNN),

pages 2275–2281. IEEE, 2017. 11

[16] D Mulmule, PK Netrakanti, LM Pant, and BK Nayak. Machine learning

technique to improve anti-neutrino detection efficiency for the ISMRAN

experiment. Journal of Instrumentation, 15(04):P04021, 2020. 11, 12, 15

[17] Rui Li, Z You, and Yumei Zhang. Deep Learning for Signal and Background

Discrimination in Liquid based Neutrino Experiment. In J. Phys.: Conf. Ser,

1085, page 042037, 2018. 11, 12

[18] Nicholas Choma, Federico Monti, Lisa Gerhardt, Tomasz Palczewski,

Zahra Ronaghi, Prabhat Prabhat, Wahid Bhimji, Michael Bronstein,

Spencer Klein, and Joan Bruna. Graph neural networks for icecube signal

classification. In 2018 17th IEEE International Conference on Machine Learning and

Applications (ICMLA), pages 386–391. IEEE, 2018. 11, 12, 15

41

https://pandas.pydata.org

BIBLIOGRAPHY

[19] Max Neff, Gisela Anton, Alexander Enzenhöfer, Kay Graf, Juergen

Hößl, Uli Katz, Robert Lahmann, and Carsten Richardt. Signal clas-

sification for acoustic neutrino detection. Nuclear Instruments and Methods in

Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated

Equipment, 662:S242–S245, 2012. 11, 12

[20] Tara N Sainath, Oriol Vinyals, Andrew Senior, and Haşim Sak. Convo-

lutional, long short-term memory, fully connected deep neural networks.

In 2015 IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pages 4580–4584. IEEE, 2015. 12

[21] Vincent A Traag, Paul Van Dooren, and Yurii Nesterov. Narrow scope

for resolution-limit-free community detection. Physical Review E, 84(1):016114,

2011. 13

[22] Yoshua Bengio. Practical recommendations for gradient-based training

of deep architectures. In Neural networks: Tricks of the trade, pages 437–478.

Springer, 2012. 17, 18, 19

[23] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.

MIT Press, 2016. http://www.deeplearningbook.org. 17, 18, 19, 32

[24] Sebastian Ruder. An overview of gradient descent optimization algorithms.

arXiv preprint arXiv:1609.04747, 2016. 19

[25] Amichai Painsky and Gregory Wornell. On the universality of the logistic

loss function. pages 936–940, 2018. 19

[26] Chigozie Nwankpa, Winifred Ijomah, Anthony Gachagan, and Stephen

Marshall. Activation functions: Comparison of trends in practice and

research for deep learning. arXiv preprint arXiv:1811.03378, 2018. 19

[27] Gang Wang, Georgios B Giannakis, and Jie Chen. Learning ReLU net-

works on linearly separable data: Algorithm, optimality, and generaliza-

tion. IEEE Transactions on Signal Processing, 67(9):2357–2370, 2019. 19

[28] Paula Branco, Luis Torgo, and Rita Ribeiro. A survey of predictive

modelling under imbalanced distributions. arXiv preprint arXiv:1505.01658,

2015. 20, 22, 23

42

http://www.deeplearningbook.org

BIBLIOGRAPHY

[29] Alberto Fernández, Salvador García, Mikel Galar, Ronaldo C Prati,

Bartosz Krawczyk, and Francisco Herrera. Learning from imbalanced data

sets. Springer, 2018. 22

[30] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever,

and Ruslan Salakhutdinov. Dropout: A Simple Way to Prevent Neural

Networks from Overfitting. Journal of Machine Learning Research, 15(56):1929–

1958, 2014. 28

[31] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using

t-SNE. Journal of machine learning research, 9(Nov):2579–2605, 2008. 29

[32] Liyu Gong and Qiang Cheng. Exploiting edge features for graph neural

networks. pages 9211–9219, 2019. 34

[33] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-

to-end deep learning architecture for graph classification. 2018. 35

[34] Yuzhe Ma, Haoxing Ren, Brucek Khailany, Harbinder Sikka, Lijuan Luo,

Karthikeyan Natarajan, and Bei Yu. High performance graph convolu-

tional networks with applications in testability analysis. In Proceedings of the

56th Annual Design Automation Conference 2019, pages 1–6, 2019. 36

[35] Lingxiao Ma, Zhi Yang, Youshan Miao, Jilong Xue, Ming Wu, Lidong

Zhou, and Yafei Dai. Neugraph: parallel deep neural network com-

putation on large graphs. In 2019 {USENIX} Annual Technical Conference

({USENIX}{ATC} 19), pages 443–458, 2019. 36

[36] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan,

and Viktor Prasanna. Accurate, efficient and scalable graph embedding.

In 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS),

pages 462–471. IEEE, 2019. 36

43

http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html

	List of Figures
	List of Tables
	1 Introduction
	1.1 Problem Statement
	1.2 User Requirements
	1.3 Research Question

	2 The Data
	3 Related Work
	3.1 Event Trigger Algorithms
	3.2 Deep Learning in Particle Physics
	3.3 Deep Learning in KM3NeT
	3.3.1 The GPU Pipeline by Karas et al. (2019)
	3.3.2 Limitations of The GPU Pipeline

	4 Replacement for Hit Correlation Step
	4.1 Data Preparation
	4.1.1 Preparation of Training Data
	4.1.2 Preparation of Testing Data

	4.2 Model Description
	4.3 Model Evaluation
	4.4 Results

	5 Replacement for Graph Community Detection Step
	5.1 Primer on Graph Convolutional Neural Networks
	5.2 Data Preparation
	5.3 Model Description and Evaluation
	5.4 Results

	6 Recommendations
	6.1 On the MLP
	6.2 On the GCN
	6.3 On Independence of the Models
	6.4 On the Runtime Performance

	7 Conclusion
	Bibliography

